(TRANSLATION) CURVES IN ABELIAN VARIETIES AND TORSION
POINTS

M. RAYNAUD

Let A be an abelian variety defined over C, T the torsion subgroup of A(C) and X a proper,
integral, non-elliptic curve in A.

Theorem 1. The set T N X (C) of torsion points on X is finite.

Recall that the analogue of this statement, where we replace T' by its n-primary component
(n > 1 an integer), was established by Bogomolov [1, Th. 3].

The idea of the proof is as follows:

Assume for simplicity that X is smooth and that X and A are defined over a number field L.
Let 05, denote the ring of integers of L. Let U be a non-empty open subset of Spec(&7r,) such
that there exists an abelian U-scheme &/ with generic fibre A and a curve 2 in &/, that is proper
and smooth over U, with generic fibre X. Let ¢ denote the relative Jacobian of 2" over U and
a: g — o the Albanese morphism associated to the inclusion £ in /. Possibly by restricting
U, we assume the following conditions hold:

i) U is unramified over Spec(Z).
ii) Ker(a) is smooth over U and the number of connected components n of the geometric fibres
of Ker(a) is invertible in U.

Let v be a closed point of U over a prime p and let ﬁ/L\v be the completion of the local ring of

v in U. By passing to the maximal unramified extension of 5;1,, then completing, we obtain a
complete discrete valuation ring R, with algebraically closed residue field &k of characteristic p and
fraction field K; extending L. The essential part of our proof is the following local result:

Theorem II. For all a € <7 (R) the points of (Z +a)(k) that lift to points of (Z +a)(R)Np</ (R)

are finite in number, and uniformly bounded with respect to a.

This statement immediately leads to a significant part of Theorem I: the torsion points of
Z + a, of order coprime to p (which we will refer to as p’-torsion), are finite in number, and
bounded independently of a € o/ (R).

Changing the point v in U, we deduce an analogous result for the p-primary torsion. This comes
from the finiteness of the p’-torsion and the uniform finiteness after translation of the p-primary
torsion, it is then easy to deduce Theorem I (cf. 7.4).

Theorem II can be proved using differential calculus modulo p?, the idea is as follows. Changing
notation, let A and X be the preimages of &/ and 2 after base change Spec(R) — U to the point
v. Let Ag and X denote the special fibres of A and X over R/pR = k, and let A; and X; be the
restrictions of A and X over Spec(R1) where Ry = R/p?R. Let % denote the sheaf of ideals of X,
in Ag and A4 = (F/7¢)" denote the corresponding normal sheaf.

To establish Theorem II we have to analyse the image of X7 (Ry) N pA;(R1) in Xo(k). To do so
we consider the blow-up F of A with centre X with special fibre Ey and Vj the smooth open locus
of Ey over Xy. In fact V} is an affine space associated to the fibre bundle .4;: it is the affine space
which controls the liftings of Xy in A;. Locally, we can choose coordinates x,y1, ..., 4, on A, such
that X is given by equations p = 0,y = ... = y, = 0; and V is given by coordinates z, z1, ..., 2,
satisfying pz; = y;. Let hg : Vo — X denote the canonical projection. Let (Aj, Xo)(R1) denote
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the subset of A;(R;) of points that reduce modulo p to points of Xo(k). We then obtain a map 7
allowing the following diagram to commute:

(A1, Xo)(F1

) T > Vo(k
Xo(k)

The image of X;(R1) under 7 (resp. (A1, Xo) N pAi1(R1)) gives the rational points of an integral
curve X{, (resp. Yj) in V. To show that the image of X;(R1) N pAi(R1) in Xo(k) is finite, it
suffices to show that X NY] is finite, i.e. X{, and Y| are distinct. Now, hg induces an isomorphism
X} = Xo (X}, is the trivialisation of the bundle V; associated to the lift X; of X( in A1), and we
show that the radicial degree of the projection Yj — X is > 1.

We study the various lifting properties of h : V) — Xj in sections 2 and 3. In section 2 we
study the properties of 7 which are elementary in nature. In section 3, we study a lifting property
connected to characteristic p > 0 which is useful for understanding Yj; it’s here where we justify
the introduction of Vj. To study collections of points of the form pA;(R;y) N (A1, Xo)(R1) one
might have thought to use the Greenberg functor, but this hides the radicial phenomena which are
essential for us, and are highlighted by the use of Vj.

The calculation of the radicial degree of Yj — Xy is done in section 4 with some preliminary
results in section 1. Theorem II is proved in 4.4.1 and 6.1.1. Note that the proof, in principle,
provides an upper bound for the cardinality of the image of (2 + a)(R) Np</(R) as a function of
the fibre bundle .4(, which will only be tractable when A is an abelian surface.

The method presented here has the disadvantage of treating the p’-torsion and p-primary tor-
sion separately. Recently, Coleman has proposed another approach, also p-adic, which avoids this
distinction. It should lead to a new proof of Theorem I and has allowed us to determine exactly
the torsion points on certain Fermat curves.

Let’s return to the initial problem of X in A over C. In [5] Serge Lang poses the following
problem: given a subgroup I' in A(C) of finite type, and the group I' of division points of T, is
' N X finite?

Theorem I provides an answer to this question when I' = 0; a positive answer in general is, a
priori, a stronger result than Mordell’s Conjecture. As another application of Theorem II, we show
that in fact Mordell’s conjecture implies Lang’s conjecture (for more precise statements cf. 9.2.1
and 9.2.2).

Finally, let us point out that Theorem I has natural extensions in the case where X is replaced
by any subvariety of A. We will study these generalisations later in the article.

)

1. CURVES EMBEDDED IN ABELIAN VARIETIES IN CHARACTERISTIC p > 0

1.0. In this section, k is an algebraically closed field of characteristic p > 0. Let S be a k-scheme.
We denote by g the sheaf of differential forms of S of degree 1. For any integer m € Z, we
write 0™ : Spec(k) — Spec(k) for the morphism which sends a € k to a?” and write S(™) for the
k-scheme given by base change via ¢™ (in other words, if S is affine, defined by polynomials f; =0
in the ring k[Ty], then S (m) is given by polynomials f; after the coefficients are raised to the power
of p"). We then obtain a relative Frobenius morphism:

F:Stm s glm+)

which is a radicial k-morphism; by iterating, we obtain a k-morphism F" : S (m) _y g(m+n) for all
n > 0. In particular, we get k-morphisms F" : S(=m) 5 S and F™: S — S0,

1.1.
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1.1.1. Let A be a k-abelian variety and i : X — 4 an immersion of a proper, integral k-curve. Let
a: X — X be the normalisation of X and define i :=ioa : X — A. Let Jg be the Jacobian of X
and a : J; — A the Albanese morphism associated to i.

Definition 1.1.2. We will say that the immersion ¢ : X < A satisfies the property (x) if the
following conditions are met:

i) The morphism a : Jg — A is surjective with kernel N smooth over k.

ii) The group of connected components N/N° of N is of order coprime to p.

Remark 1.1.3. i) The condition (x) is clearly satisfied if a is an isomorphism, in particular if
X is smooth and 7 : X < A is the usual embedding of X in its Jacobian.
ii) Note that part i) of (x) is equivalent to the fact that the map of sections:

HO(A,Q4) — HY(X,Q5)
induced by 7 is injective. Then condition (%) is equivalent to the fact that the map:
Hip(A,Qa) = Hop(X, Qy)
on de Rham cohomologies is injective (we will not use this fact in what follows).
1.2.

1.2.1. Let u : B — A be an isogeny of abelian varieties, with kernel G of order a power of p and
G = G¢ X Gipe the canonical decomposition of GG into an étale group and an infinitesimal group.
The preimage B x4 X, of X under u, is not reduced as soon as the dimension of A is > 2. Let
Y be the unique reduced curve that is set-wise equal to B x4 X and v : ¥ — X the morphism
induced by uw. Even if X is smooth, this does not guarantee that Y is smooth; however, smoothness
is preserved if Gyy¢ is the kernel of an iteration of Frobenius morphisms on B (this will be the case
if either of the following two conditions are fulfilled: i) B = A and w is the multiplication by p map;
ii) A is ordinary or A is the product of supersingular elliptic curves). We denote by £ : Y — Y the
normalisation of Y, j : Y < B the canonical immersion, j := joB and ¢ : Y — X the normalisation
of v.

Proposition 1.2.2. Suppose i : X — A satisfies (%) (1.1.2). Then:

i) The curve Y is integral and it’s separable degree over X is the rank of Ges.
ii) The radicial degree of Y over X is p® where s is the smallest integer such that F* annihilates
Ginf-

The fact that Y is integral (or equivalently Y is connected) follows from part ii) of (x): indeed
this implies that the fibre product B x 4 J; induced by u and a is connected and we reduce to the
classical case X = X and A = Jx.

To establish ii), we can, even if it means dividing B by G, reduce to the case G = Gjn¢. Let p”
be the radicial degree of Y relative to X. As G is annihilated by F®, there is a factorisation of F*
on B:

F*:B*% A— B®
and thus we get a factorization of F'® on Y:
F Y 5 X 5 y®
when r < s. The reverse inequality follows from the following lemma:

Lemma 1.2.3. Suppose that v : B — A is a radicial isogeny, ¥ — X is of degree p" and that
i: X — A satisfies condition (i) of (x). Then we get a canonical factorisation:

Fr:AC" o B% A

and in particular G = Gyt is annihilated by F.
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We can identify ¥ with X(-™) and & : ¥ — X with F”. The Jacobian of X(=") is J)({T). We
then deduce from the commutative diagram:

X —— X

Xt 5y

(where the horizontal arrows are normalisations), a commutative diagram of abelian schemes:

JEn A
N
FT B Fr

<
BN

where b is the Albanese morphism associated to j : X(=7) =Y — B. But Ker(a(-")) = N(-7) ig
a smooth group scheme, so its image under b is a smooth subgroup scheme of B. Again the image
is contained in Ker(u) = G which is assumed to be radicial, this image is zero and we obtain a
morphism ¢ : A" — B such that b = coal""). But then as a(~") is surjective, F" : AT 5 A
factors through « o ¢, then the lemma follows.

1.3.

1.3.1. By translation, we identify the tangent space at any point of A to the tangent space at the
origin and we write P4 for the associated projective space. The curve X embedded in A by ¢ has
an associated Gauss map: if x is a smooth point of X, we can associate to it a point of P4 defined
by the tangent to X at x. We thus obtain a morphism from the smooth locus of X to P4 which
canonically extends to a morphism vx : X P 4. Let Z be the sheaf of ideals of &4 which defines
X, then we obtain an exact sequence:

(1) I I? = Qaly — Qx =0

Pulling back this sequence via « : X — X, we obtain an exact sequence on X:

(I ) I?) = () = o (Qx) = 0

If we divide o*(€2x) by its torsion subsheaf, then we obtain an invertible sheaf Qx: a quotient
of i*(24), this defines a map vx : X — P4. So we have an exact sequence of locally free sheaves

on X:

(2) 0— Ny =i (Q4) = Qx — 0

where A3 is the subsheaf of i*(Q4) generated by the image of a*(.#/.#%). Note that Qx is
simply the image of the map of differentials o*(Qx) — Qx associated to . In particular, the
degree of vx, which is the degree of the invertible sheaf Qx, is at most 29 — 2 where g3 is the
genus of X. Of course, when X is smooth, Qx = Qx and JV)}/ = #/.#? is the normal sheaf.
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1.3.2. Let’s return to the situation of 1.2.1 where we have an isogeny u : B — A. The immersions
i: X — Aand j:Y — B correspond to Gauss maps: yx : X — P4 and Yy Y — Pg.

The map vx is constant if and only if Qx = Ox. This is the case when X is elliptic or if X is
stable under translations by a radicial subgroup of rank p (for example, if i : X < A satisfies (x)
and if we take a radicial isogeny u : B — A of degree p, then 7y is constant). If i : X — A satisfies
(%), HY(X, Q x) is a k-vector space of dimension at least the dimension of A, in particular, vx is
non-constant if the genus of X is at least 2.

Proposition 1.3.3. Suppose the isogeny u is radicial and i : X < A satisfies (x) (1.1.2) and that
X is of genus > 2. Then we have:

degree(yy) < degree(yx)

In fact, if p” is the degree of Y — X we have, as in 1.2.3, a factorisation:
Fr:AD 5 B2 A

Then w induces a birational map, we denote again by w : X — V. Let X" = Y be the
common normalisation of X (=" and Y. Then using the notation of 1.3.1, we obtain inclusions Qy C

Qx (- C Qg and therefore degree(yy) < degree(yy (- ). But degree(yy(-r) < degree(yx) by
translating by the isomorphism ¢” (1.0), the proposition then follows.

Corollary 1.3.4. Let us take the isogeny u to be the multiplication by p map on A, denoted p4.
Then i : X — A satisfies (x) and if X has genus > 2, then the images of the maps vy and vx opa
on'Y — P4 only have finitely many points in common.

As Y is reduced, it suffices to show vx o psa # vy and, a fortiori, we can do this by showing
the maps have different degree. Let A = B - A be the factorisation of ps where v is étale
and u is radicial of degree p”. As py factors through the Frobenius of A, we have » > 1. The
two maps yx o pa and 7y are factorisations of v, so replacing p4 with v : B — A, we reduce
to the case of a radicial isogeny. We then have that degree(yy) < degree(yx) by (1.3.3). But
degree(yx o u) = p"degree(yx) > degree(yx) (since r > 1 and degree(yx) > 1) thus:

degree(yy) < degree(yx o u)

1.3.5. In this subsection we reformulate Corollary 1.3.4 in terms of sheaves. We use the notation
of 1.2.1 with u = pa.

Let wy, ...,wq be a basis for Q4 and [p] : p*%(24) — Q4 the isomorphism induced by the identity
on global sections; i.e. [p](p% (w;)) = w;, for i = 1,...,d. Pulling back along j : Y < A we obtain an
isomorphism [p]y : (i o u)*(24) = j*Q4 which fits in the following diagram:

V(I ) I2) —— (i 00)*(4) —— v*(Qx) —— 0
(1) lmy
I I ——— () > Qy s 0

in which the rows are exact, the first being the pullback of the exact sequence (1) of 1.3.1 by v
associated to yx, and the second being the analogue of (1) for 7y

Taking the pullback of this diagram by the normalisation 8 : ¥ — Y and replacing the exact
sequence (1) of 1.3.1 by the exact sequence (2), we obtain the following diagram with exact rows:
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0 —— (M) —— (100)*(Qa) — @*(Qx) —— 0
(2) Lmyl
0 > N > 75(Qa) y Qy > 0

where [p]; is the isomorphism obtained by pulling back [p] along j. By composing, we obtain
the following morphisms from the diagrams:

(3) v () I = Qy and ot (AY) = Qy

Of course 7 is identified with 4 on the smooth locus of Y that lies above the smooth locus of X.

Let’s describe 7 locally. Let a be a local section of .# and @ it’s image in .# /.2 and da = Y, fiw;
the differential of a. Then the image of a in 4|x under the morphism in 1.3.1 (1) is simply da|x.
Then:

(4) (0¥ (@) = Y _(fiowwily

i
Corollary 1.3.6. Under the hypotheses of 1.3.4, the maps v and 4 are non-zero.

Since JV)}/ is locally free and as v and # coincide over a non-empty open set, it suffices to show
that 4 # 0. Now, if we had ¥ = 0, [p]; would induce, by passing to the quotient in (2), an
isomorphism 7*(Qx) = Qy and we have already observed that vy and yx o p4 do not have the
same degree (cf. 1.3.4).

Remark 1.3.7. The same degree argument show that Corollaries 1.3.4 and 1.3.6 still hold if we
assume X is smooth and of genus > 2, even if i : X < A does not satisfy (x). The condition (x)

is used, in part, to treat the case when X is singular, and on the other hand to explicitly compute
degrees (cf. 1.2.2).

2. NOTES ON THE NORMAL BUNDLE

2.0. In this section, Ry is a local ring with maximal ideal m, residue field k; we suppose that m? = 0
and that m is a 1-dimensional k-vector space; and choose a generator m of m. In what follows, we
will take R; to be the quotient of a discrete valuation ring by the square of its maximal ideal. We
denote k-schemes with an index 0, in particular, if S; is an Rj-scheme, Sy denotes the k-scheme
S1 X R, k, induced by reduction modulo m on S;.

2.0.1. Let S; be an Rj-scheme. Multiplication by 7 induces a morphism of g, -modules ¢ :
Os, — ©0s, = m0s,. We will frequently use the fact that S; is flat over R; only if 6 is an
isomorphism [2, Ch. III, §5, Th. 1]. When this condition is met, we will denote by 7! the inverse
of 6.

2.1. Let S be a scheme and .# a quasi-coherent 0g-module. Recall that the vector bundle V(.Z"),
associated to the sheaf .#, is the affine S-scheme defined by the total space of the symmetric
algebra of .#; it represents the functor sending f : T — S to the set of morphisms of &p-modules

u: fY(AM)— Or.
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2.2. For the remainder of this section, we consider an Rj-scheme A; and a closed subscheme X
of Ag = Ay xp, k. Let .# (resp. .#) be the ideal sheaf of 04, (resp. 04,) that defines Xy. Then
the image of 7 in 04, is contained in .# and we obtain exact sequences:

WﬁAO > S )fo

o

(1)
Wﬁxo E— f/fZ — fo/jog — 0

Considering the vector bundle V(.#") over the scheme A; and let V(.#")* denote the subscheme
of V(.#V) that represents the following functor: for all Aj-schemes f: T — Ay, V(#V)*(T) is the
subset of V(.#V)(T) given by morphisms u : f*(.#) — Op that satisfy u(r) = 1 (where we abuse
notation using 7 to mean the canonical image of 7w in f*(.%)).

If u : f*(#) — Or corresponds to a point of V(.#¥)*, we then have: 0 = u(r?) = 7-1,s0 7
annihilates Op. Moreover, . - Op = u(.¥ -7) = w-u(&) = 0, so .# annihilates Or. In other words,
the structural morphism V(.#V)* — A; factors through Xo; in particular V(#V)* = V((.# /#2)V)*.
From now on we simply denote Vp, for the Xg-scheme V(.#V)* and hg : Vo — X for the structural
morphism.

Example 2.2.1. i) If Ay = Ap, we have 7 = 0 in 04,, and therefore Vj is empty. In fact the
most interesting case is when A; if flat over Rj.

ii) If A; is smooth over R; and if X is smooth over k, then hy : Vj — Xg is smooth. More
precisely, suppose A; is affine over X, and defined by a regular sequence in Ag that lift to
elements ¢; in .#. Then there exists unique sections 7; in 04, such that ¢t; = 7T; (2.0.1) and
Vp is the affine space over Xy with coordinates T;.

2.2.2. There is a natural action of V((#/#2)Y) on V(£V)*. In fact, if f : T — A is an A-scheme,
we deduce from (1) the exact sequence:

A (O0x,) = f (I 5 () IE) =0

Then if u : f*(.#/.#2) — Or sends 7 to 1, for any other morphism u’ with this property we have
a unique decomposition u’ = u + v o 7 for a unique map v : f*(%/#¢) — Op. This defines the
action of V((A/7¢)") on V(#Y)* and shows that V(.#Y)* is formally a principal homogeneous
space under this action [10, Exp. III, p. 13].

2.3. Let 57 be a flat Ry-scheme and uq : S1 — A1 an Ri-morphism such that ug : So — Ag factors
through Xy. This last condition means we have . - 0g, = m - Og,. Moreover, the flatness of S;
ensure that the multiplication by 7 : s, — 70s, is an isomorphism (2.0.1), hence defining a

can.

morphism of Og,-modules u*(.¥) — & - Og, =m- O, =, Os, that sends u*(7) to 1. This then
corresponds to a k-morphism w : Sog — Vo where fo o uy = ug. We will then say that uf, is a lift of
ug through Vj.

Let (A1, Xo)(R1) be the subset of points of A;(R;) whose image in Ag(k) lies in Xo(k). The
lifting operation applied to S; = Spec(R;) gives a canonical map 7 : (A1, Xo)(R1) — Vo(k) that
forms a commutative diagram:

(A1, Xo)(F1) - » Vo(k)

T~

Xo(k)

When A; is smooth over R; and X is smooth over k, the map 7 is surjective, as can be seen from
using the coordinates in 2.2.1 ii).
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Example 2.3.1. Let us return to Example 2.2.1 ii) using the notation t; and T;. If S is a flat
Rq-scheme and u; : S1 — Aj an Ri-morphism such that ug factorises through Xg, then t;ou = 7 f;
for some unique sections f; of Og,. Then the lift uj, of ug is given by the relations: T; o uj, = f;.

2.4. Let X; be a subscheme of A;, flat over R; such that X; x4, k = Xo. Let 51 : X1 — A
be inclusion and _# the corresponding sheaf of ideals in &4, defining X;. The lift (2.3) of jg is
a k-morphism j) : Xo — Vj such that hg o j{ = jo, then j is a section of hyg. We have ¢ C &
and the image of .# in the quotient sheaf Ox, = 04,/ ¢ is 10x, = w0x,. If we go back to the
definition of the lift, we find that jj is associated to a morphism of sheaves: . — 70x, — Ox, by
composing the canonical surjection and the isomorphism 7—!. In particular, the kernel of this map
is _#. Conversely, if we take a section j of hg, it arises from a morphism of sheaves % — Ox,
that sends 7 to 1. Let _# be its kernel. Then we have an exact sequence:

0= Oxy 5 Oa,) F = O, ]I =0

where 04,/ = Ox, and where 0(1) is the image of 7. If X is a subscheme of A; defined by
J then Xy = X xp, k is flat over Ry (2.0.1). We have then established the following result (well
known in the case where Ag and Xy are smooth over k [4, Cor. 5.4].

Proposition 2.4.1. The lift (2.3) provides a canonical bijection between subschemes X1 of Ai,
which are flat over Ry such that X1 xp, k = Xo, and the sections of hg : Vo — Xp.

3. DIFFERENTIAL CALCULUS MODULO p?

3.0. In this section, we use the notation of the previous section, but assume further that the residue
field k£ of R is algebraically closed with characteristic p > 0 and that the generator u of its maximal
ideal m is the image of p. In other words, R; is the quotient, modulo p?, of a discrete valuation ring
of mixed characteristic, unramified, with algebraically closed residue field of characteristic p > 0.

3.1. Let u; : By = A; be an Rj-morphism of smooth schemes, such that ug = u; Xg, k : By = Ao
has zero differential. Let ig : Xg < Ag be a closed immersion, Y; the reduced preimage of Xy in
By and jg : Yy < By the associated immersion. We denote by vg : Yy — X the morphism induced
by up : By — Ap. Let & (resp. .%) denote the ideal sheaf of Xy in A; (resp. Xo in Ap) and let
J (resp. _Zp) denote the ideal sheaf of Yj in By (resp. Yy in By). We have .# - 0, C ¢ and
A - ﬁBo C /0.

If hy : Vo — X is associated to .# as in 2.2, then we have a map (2.3) 7: (A1, Xo)(R1) — Vo(k).
Similarly, let (B1,Yp)(R1) be the preimage of Yy(k) in Bi(R;) via the canonical map Bi(R;) —
By(k). Since the differential of ug is zero, the map Bi(R;) — Aj(R;p) induced by wu factorises
through By(k). A fortiori, the map (B1,Yy)(R1) — (A1, Xo)(R1) induced by u factorises through
Yo(k) via u : Yo(k) — (A1, Xo)(R1). Composing 4 with 7, we obtain a map of sets Yy(k) — Vp(k).
In this section, we construct a canonical k-morphism vf, : Yy — Vjp which, on points, is equal to 7o.
We will then calculate the differential of vj. Putting this all together we obtain a commutative
diagram:

(B1,Y0)(R (A1, Xo)(R1) ———— Vo(k

W / /
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3.2. Let a and b be sections of 04,, over an open set U, ag, by (resp. a and b and resp. g, and
by) their images in 04, (resp. Op, and resp. Op,. As k is perfect and By is smooth, and as the
differential of ug is zero, a and b are p'" powers in Op, : ay = of, by = B5. Let a and B be lifts of
o and By in @p,. Then P is the unique lift of gy in Op, that is a pt" power; it is the Teichmuller
lift of ay which we denote by af;. Similarly, let by = SP. We then have relations:

(2) (ab)y = agby;  (a+b)y = ag + by + pS(aw, o)
where S(U,V) is the degree p homogeneous polynomial in Z[U, V] given by:
SU,V)=[U+ V)P =U? = V*]/p

Since By is flat over Ry and a and ag are both lifts of a,, there exists by 2.0.1 a unique section
®(a) of Op,, such that:

3) a = ag +p®(a)
From (2) we deduce the identities:
P(a+0b) = P(a) + P(b) + S(ao, Bo)
(4) ®(ab) = ag®(b) + by®(a)
o(p) =1

Suppose a € ., then gy = of € _Zp and since Yj is reduced, ap € _# and therefore a5 € 7.
The identities (4) then show that ® is linear modulo ¢} and, a fortiori, defines a morphism of
sheaves: uj(.#) — O,/ %o that sends p to 1. By the definition of Vj (2.2), the morphism of
sheaves corresponds to a k-morphism v}, : Yo — V). We now show that map 7o u : Yp(k) — Vo(k)
is induced by v, (which describes it completely as Y} is reduced and k is algebraically closed). For
this we note that if f; : 41 — Bj is an Ri-morphism with (7 smooth over Rj, and if Zj is the
preimage of Yp under fy, then the previous construction of v is functorial with respect to f, i.e.
it associates to f a morphism vj o fy : Zy — V. We apply this to the case C; = Spec(R;) and
for fi : Spec(R;) — B; a point of (Bi,Yy)(R1). Then Zy = Spec(k), and the construction above

—1
associates to fi a unique linear map: I — m 2, k therefore corresponding to the lift of f; in
the sense of 2.3.

3.3. In the remainder of this section, we calculate the differential of vj. The definition of Vj =
V(#V)* (2.2) implies that the relative sheaf of differentials Qy;/x, of Vo over Xj is canonically
isomorphic to hij(.%/.7¢), hence giving an exact sequence:

() hi(Q2x,) = Quy = h§(Ho/IF) — 0

As the differential of wg is zero, the differential of v, comes from, by passing to the quotient, the
following map:

(6) 8 (v)" (v x0) = V5 (S0/I5) — Oy,

which we will determine.
Let ao be a local section of #/.#2; the image of a local section a of .#. Using the notation of
3.2, with a:
dvg (@) = d®(a)ly,

But according to (3) we have:
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dui(a) = uj(da) = p(dag + d®(a))
Then uj(da) = p¥(a) where ¥(a) is the unique local section of Qp, such that
U(a) = dag + d®(a)

As ag € _#, we have V(a)|y, = d®(a)|y, therefore is equal to dvj(ao).
In summary, we have the following result:

Proposition 3.3.1. Under the hypotheses of 3.1, there exists a unique k-morphism vj, : Yo — Vp,
such that ho o vy = vy and which, on rational points is equal to the map 7o : Yo(k) — Vo(k). The
map & (6) describes the differential of v{, and is calculated as follows: let a be a local section of %,
with image ag in Sy I¢. Then 6v(ap) = W(a)|y, where W(a) is the unique local section of Qp,,
such that ui(da) = p¥(a).

4. APPLICATIONS OF CALCULUS MODULO p2 TO ABELIAN SCHEMES

4.0. In this section R; is a local ring of the type considered in 3.0.

Let A; be an abelian Rj-scheme, ig : Xg — Ap = A1 Xpg, k the inclusion of a proper, integral
curve with associated sheaf of ideals .# (resp. .%) over A; (resp. over Ay). We denote hg : V) — X
for the Xo-scheme V(.#V)* considered in 2.2. Let (A1, Xo)(R1) be the preimage of Xo(k) in A;(R1)
under the reduction modulo p map A;(R1) — Ag(k). Then the lifting operation (2.3) provides a
canonical map 7 which makes the following diagram commute:

(A1, Xo) (I

) T > Vo(k
can. %
Xo(k)

4.1. Let pa, (resp. pa,) represent multiplication by p on A; (resp. Ap). Since the differential of
DA, is zero, we are in the situation of the previous section, taking By = A and u; = p4,. Let Yy
be the reduced preimage of X under p4, and vg : Yy — X¢ the morphism induced by pa,.

The multiplication map pa, : Ai1(R1) — Ai1(R1) defines, by passage to the quotient, a map
p: A(k) — A1(Ry); this induces a map py; : Yo(k) — (A1, Xo)(R1). The image of py, is formed
of the points of pA;(Ry) which are lifts of points of Xy(k). From 3.3.1, there exists a canonical
k-morphism v}, : Yy — V) that factors as hg - v, = v which, on k-valued points, coincides with
T o Py,. We then obtain the following commutative diagram:

)

Yo(k) ﬁ—Y0> (A1, Xo)(B1) ——— Vo(k)
(1) w0 can. o
Xo(k)

We will reuse the notation of section 1, except now k-schemes and k-morphisms will be given
an index 0. The closed immersions Xy < Ag and Yy < Ag correspond to Gauss maps (1.3.2) vx,
and 7y, and a morphism of sheaves 7 : v (% /2¢) — Qy, (1.3.5 (3)) that measures the difference
between yx, o vp and 7y,. Moreover, and as vy has zero differential, the differential of v{, comes
from the map 0 : vi( S/ 2¢) — Qy, (3.3 (5)).

Lemma 4.1.1. The maps v, : v§(Fo/ IE) — Qy, coincide.
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Indeed, suppose that wi, ...,wy is a basis of sections of {24, and a a local section of .# with image
do in S/ ¢ and let da = 3", fiw; be the differential of a. Then according to (4) in 1.3.5, we have:

Y(v§(@0)) = D (fi o vo)wily,
7
Moreover, p (w;i) = pw;, thus p} (da) = p(3>_;(fiopa,)w:) and consequently, using the notation
of 3.3.1, ¢¥(a) = >, (fi o pay)wila,- We deduce from 3.3.1 that:

(05 (@0)) = 3 (fs 0 vl
i
hence the lemma.
Let YJ be the scheme-theoretic image of Yy under v}, and let hf, : Yj — X denote the restriction
of hy to Y{. As vy is finite, so is hy,.

Proposition 4.1.2. Suppose that ig : Xo < Ag satisfies () (1.1.2) and that the normalisation Xy
of Xy has genus > 2. Then the map Yy — Yy induced by v is generically étale.

Note first that the property (*) guarantees that Yy, and thus also Y{ is integral (1.2.2). Moreover,
according to 1.3.6, we can take a non-empty open set Uy of Xg above which Xy and Yy are smooth
and ~ is surjective. By 4.1.1 v, is unramified over Uy. If we then restrict Uy so that Yj is also
smooth over this open set, then Yy — Y| is étale over U.

4.2. Let G (resp. Go) be the kernel of p4, (resp. pa,). Then Gg is the product of its connected
component (Go)inf and étale component (Go)g. However, over R; we have only a short exact
sequence of flat groups schemes:

(1) 0— (Gl)inf — G1 — (Gl)ét — 0

where (G1)inf lifts (Go)int and (G1)et lifts (Go)et-
Proposition 4.1.2 implies that the radicial degree of h{, : Yy — Xy is equal to the radicial degree
of vg : Yo — Xo. Hence, according to 1.2.2:

Corollary 4.2.1. With the hypotheses of 4.1.2, the radical degree of h{, is p°*, where s is the smallest
integer such that F'* annihilates (Go)ing; @n particular s > 1.

Remark 4.2.2. What can we say about the separable degree of v(;? Of course, it is bounded above
by the separable degree of vy which is equal to the rank of (Gg)s. We can refine this upper bound
by taking into account the lift Ay of Ay. Indeed, there is a unique, maximal étale subgroup H of
(G1)et, above which the exact sequence (1) will split. We then choose an étale group subscheme
H, of Gy that lifts H and let B; be the quotient A;/H;. We then get the following factorisation

of pa,:

A2 B S A

We can apply the construction of section 3 to u; instead of p4,. We then deduce that if Zj is the
reduced scheme-theoretic preimage of Xy in By, the morphism v, : Yy — Yj factorises through Zj.
Thus, the separable degree of v, is at most the separable degree of ug : By — Ao which is equal to
the rank of (G1)st/H.

Example 4.2.3. Suppose Ay is an ordinary abelian variety. Then we have H = (G )¢ if and only if
the exact sequence (1) is split, i.e. Ay is the canonical lifting of Ay in the sense of Serre-Tate [8, §5].
In this case the degree of hy, is equal to the radicial degree which is p® = p.
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4.3. Let X7 be a flat curve over Ry which lifts X and let 71 : X7 — A; be a closed immersion
which extends ig. i; then corresponds to a section ij, of hy : Vj — Xo by 2.4.1, in particular, V}
is now a principal homogenous space via the action of V((#/.#¢)") (2.2.2) trivialised by ij. Note
that ho induces an isomorphism X{, = X where X} is the image of X, under 4.

Let z € pA1(R1) N X1 (Ry) and let 7(z) € Vo(k) be the lift of z (2.2.2). Then 7(z) € X{(k) and
by (4.1), 7(z) is also in the image of v{), so is in Yj(k). We then obtain the following commutative
diagram:

pAl(Rl) N Xl(Rl) T > Xé(k) N Yol(k)
can. %6(’“)
Xo(k)

Lemma 4.3.1. The image of pA1(R1)NX1(Ry) in Xo(k) is contained in the image of X{(k)NYy (k)
and they are equal over the smooth locus of Xg.

The first statement is clear from the above diagram. Suppose o € X{ (k) N Y (k) is a point of
Vo(k) which projects onto a smooth point g € Xo. We show that o is the image of a point of
pAi1(R1) N X (R1) under 7. As o € Yjj(k), there exists a point yg € Yy(k) such that vjy(yo) = 0. As
A; is smooth over R; we can lift yo to y; € A1(R1) say. Then = = py; = p(yo) is a point of pA;(R;)
that lifts xp and we have 7(z) = o. It suffices to show that z € X;(R;) as we know 7(x) € X/ (k).
But we suppose that X is smooth over k at g, therefore X; is smooth over R; near zy and locally
the sheaf of ideals that defines X; in A; is given by a regular sequence (t1, ...,t4—1). The choice of
t; corresponds to coordinates 11, ..., T4—1 in the Xy-scheme Vj such that a point x € A;(R;) sends
titopfi,i=1,..,d—1, f; € k. Then its lift 7(x) is a point of Vj given by T; = f; (2.3.1). It follows
that X is given by equations 7; = 0,i = 1,...,d — 1 in V. Therefore, 7(z) € X((k) & f; = 0,
i=1,..d-15ze Xi(R).

4.4. Let 170’ be the normalisation of Y] and IN"L() : 170’ — X the composition of the normalisation map
and the projection hf). Let .4 be the locally free sheaf on Y given by the quotient of 716*(%0 /28)
by its torsion subsheaf. For example, if X is smooth, or more generally if X is locally a complete
intersection of Ag, then .#y = %*(fo /93). Lastly, let 4, be the dual of ..

If a € A1(Ry), we denote X7 + a for the curve given by the translation of X; by a. We can now
demonstrate the essential part of the proof of Theorem II that was outlined in the introduction.

Theorem 4.4.1. Suppose that iy : Xo — Ag satisfies (x) (1.1.2) and that the genus of the normal-
isation of Xo is > 2. Then, for all a € A1(Ry1), the image of pA1(R1) N (X1+a)(R1) in (Xo+a)(k)
is finite, and is bounded above by the mazimal degree py of the invertible subsheaves of A .

First we consider the case a = 0. Let E be the image of pA;(R1) N (X1)(R1) in Xo(k); we will
prove that it is finite. If we identify X with X, via the projection hg, the result of 4.3.1 shows that
E is contained in X{j(k) NYj(k) (and moreover they are equal if E lies over the smooth locus of
Xo). It suffices to show that X NY] is finite, or equivalently that these integral curves are distinct.
Indeed, X, is of degree 1 over X, whereas the radicial degree of Y| relative to Xy is > 1 by 4.2.1.

This being said, let’s use the section X of h : Vj — Xy to identify the Xy-scheme Vj with
the vector bundle V((.%/.#2)") (2.2.2). The immersion Yj < V{ corresponds to a morphism of
sheaves h{f (S /2¢) — Oy, that is zero at precisely the points of XN Y. As this set is finite, this

morphism is non-zero and by pulling back to Y, and passing to the quotient of hf(.%/.#¢) by its
torsion subsheaf, we get a non-zero morphism:

e:///o—>ﬁ~0,
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The dual map €” : 0. v Ay is then injective and its image is the invertible subsheaf & ~O,(A)

of .y where A is a positive divisor on Y] with support on the preimage of X}(k) N Yy(k); in
particular the size of this intersection is bounded above by the degree of A, and so the size of E is
bounded above by the maximum of the degrees of invertible sub sheaves of .’

We now prove the more general case. An element a in A;(R;) is of the form pb + ¢ where b
and ¢ are in Aj(Rp) and c is in the kernel of the reduction map A;(R;) — Ag(k). If we replace
X1 by the translation X7 + pb, E gets sent to E 4+ pb. Note that the cardinality of these sets is
the same. If now we replace X1 by X; + ¢, V) and Y| remain unchanged, only the section X, of
ho changes. In other words, using the previous notations, and replacing e with € + (hg)*(n) for a
particular morphism 7 : %/ #% — Ox,, we obtain the same upper bound as in the case a = 0.

Example 4.4.2. i) Suppose Ap is an abelian surface. Then X is locally a complete intersec-
tion and Vj is smooth over Xy. Then the cardinality of X{,(k) N Y (k) is bounded above by
the intersection number X - Y which is also equal to the degree of .Z’. The degree is equal
to p" 5 (Xo - Xo) where Xj - Xy is the self-intersection of Xy in Ag and p"** is the degree of
h{, which factors as the following:

— p® is the radicial degree of hj as in 4.2.1

— p” is the maximal separable degree of h{, as in 4.2.2
As Xy is non-elliptic then we have (Xp - Xp) > 0 and from 4.3.1 if X is smooth, X;(R;)
always contains at least one point of pA;(Ry).

ii) Suppose Ag has dimension > 3 and that Xy is smooth. Then if ¢ is a point of Ker(A;(R1) —
A(k)), then (X1 +¢)(R;) does not intersect pA;(R1). In fact, we can identify Ker(A;(R;) —
A(k)) with a Lie algebra L of Ay. For all y € Vy(k), the points ¢ of L such that the section of
ho : Vo — X associated to (X +c¢) (cf. 2.4) passes through y, correspond to the points of an
algebraic curve L, in L. The union of the curves L, over y € Y{j(k) is a constructible set of
L of dimension < 2, therefore distinct from L and it suffices to choose c is in its complement.

Remark 4.4.3. Under the hypotheses of 4.4.1, pA;(R1) N X1(Ry) is finite and in fact the kernel of
the map pA;(R1) — Ap(k) under reduction modulo p is finite (for example it is a quotient of the
kernel of multiplication by p on Ay (k)).

5. RATIONAL AND RAMIFIED TORSION (LOCAL CASE)

5.0. In this section, R is a complete discrete valuation ring with fraction field K of characteristic

0, and algebraically closed residue field k of characteristic p > 0. We assume that the valuation

group of K is Z and let e denote the valuation of p (e is the absolute ramification index of R).
Let K be an algebraic closure of K and G the Galois group of K /K.

5.1. Let A be an abelian R-scheme, Ag the generic fibre, Ag the special fibre and T the torsion
subgroup of A(K), equipped with the natural action of G. We have T = T, P Ty, where T), is
the p-primary torsion of 1" and T}, is coprime-to-p torsion. As A is an abelian R-scheme and k is
algebraically closed, we have T,y C A(K) = A(R) and in particular, G acts trivially on 7},.

5.2. Let Ap~ be the p-divisible R-group constructed from the kernels of multiplication by powers
of p on A. We have an exact sequence of p-divisible R-groups:

(1) 0— (pr)inf — (Ap‘x’) — (Ap‘x’)ét —0

where (Ape)inf is the p-divisible group associated with formal completion of A along the zero
section and (Ape ) is étale, isomorphic to (Q,/Z,)" where h is the p-rank of Ay.

The exact sequence (1) induces the following exact sequence on torsion points with values in K
as G-modules:
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(2) 0= Ting = Tp = (Tp)es = 0
Let T, be the maximal divisible subgroup of T},(K).

Lemma 5.2.1. Suppose that the ramification index e of R is < p—1. Then T}; s a factor of the
G-module T),.

In fact, as T, is unramified over R, the specialisation lemma of [6, §1, Prop. 1.1] implies T}, N
(Tp)int = 0. Then the composition T}, < T, — (T})¢; is injective and as T) is p-divisible the image
is a factor of the trivial Galois module (7})¢ = (Qp/Z,)". Let Ty be the supplement of the image,
then the preimage of T in 7}, is a supplement of T, IQ; invariant under the Galois action.

From now on we assume e < p — 1 and we choose a supplement 7" of TI’, in T}, closed under the
Galois action. Then, by construction, the torsion subgroup give a p-divisible subgroup A” of Ape.

The following lemma shows the importance of the Galois action of G on T"(K).

Lemma 5.2.2. The cardinality of the orbits of G in T"(K) tend to oo with the order of the elements

of T"(K) (i.e. VN > 0, there exists an integer r > 0 such that, if v € T"(K) has order > p", then
the G-orbit of x has cardinality > N ).

In fact, let M"” = Hom(Q,/Z,,T") the Tate module associated to T”. It is a free Z,-module
of finite rank, with a continuous G-action. Let M* denote the open subset of M (with respect to
the p-adic topology) formed of the elements whose image in M/pM is non-zero. An immediate
compactness argument shows that the lemma is equivalent to the fact that G has no finite orbits
in M*. Now let M; be the largest Z,-submodule of M on which G acts through a finite group.
We will show M; = 0. Then T} = hﬂ M /p"M; is a divisible subgroup of 7”, on which G acts

n

by a finite group. It follows, for example by theorems of Tate [11, Cor. 1, p. 181] that T} N (T} )int
is finite. Then the composition 77 — T, — (Tp)¢ has finite kernel. As G acts trivially on (7})st
and as 717 is divisible, G acts trivially on 7;. Thus 77 = 0, as can be seen through the maximal
character of 7).

Example 5.2.3. i) If the p-rank h of Ay is zero, then T) = 0, T" = T}, = Tins.
ii) If Ag is ordinary, then T) = (T})¢; (and so T" = Tiy) if and only if A is the canonical lift of
Ap in the sense of Serre-Tate. On the other hand, if A is a more general lift of Ay, T, I’) =0
and 7" = T,,.

5.3. We have a (non-canonical) decomposition, compatible with G: T = T'@T" where T" =
Ty DT,

We say (abusively) that T is the rational torsion of A and that T" (defined for e < p —1) is the
ramified torsion of A. The rational torsion has the following properties:

i) The action of G on T" is trivial and 7" C A(K) = A(R).
ii) T" is p-divisible.
iii) The specialisation map
T — A(K) = A(R) — A(k)
is injective (in fact we have T N Tins = T, N Tins = 0).

6. CURVES AND RATIONAL TORSION (LOoCAL CASE)

6.0. We reuse the notations of 5.0 and 5.1. Moreover, in addition to an abelian R-scheme A,
suppose we have an R-curve X that is flat and immersed in A via i : X — A and satisfies the
following conditions:
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i) The fibres of X are integral; the normalisation X of X is smooth over R, with fibres of
genus > 2. In particular, the special fibre X of X is the normalisation of Xgy. Let J be the

Jacobian of X and a : J — A the Albanese morphism associated to X — X < A
ii) Suppose that a is surjective with kernel N smooth over R and the group of connected
components of N: N/Ny has order coprime to p.

Note that condition ii) depends only on the special fibre and so is equivalent to iy : Xog < Ag
satisfying (x) as in 1.1.2. Moreover, when the ramification index e of R satisfies e < p — 1, by a
result in [6, §1, Prop. 1.2], condition ii) can also be tested on the generic fibre.

6.1. We start by proving a corollary of 4.4.1.

Corollary 6.1.1. Suppose that R is unramified (i.e. e = 1) and the conditions of 6.0 are satisfied.
Then, for all a € A(R) = A(K), the image of (X + a)(R) NpA(R) in (Xo + ao)(k) is finite and
bounded above by o (4.4.1).

Indeed, set Ry = R/p?’R, Ay = A xgp R1, X1 = X xr Ry. Then the ring R; is of the type
considered in 4.0 and we can apply Theorem 4.4.1 to A; and X;. Then the image of (X +a)(R)N
pA(R) in (Xo + ao)(k) is contained in the image of (X1 + a1)(R1) N pA1(R1), and the corollary
follows.

Remark 6.1.2. In fact, for e = 1, it follows from the integrality properties of the logarithm and
exponential relative to the formal completion of A along the unit section [7, Ch. III] that the
elements of Ker(A(R) — Ai(R1)) is contained in pA(R). Then the image of (X + a)(R) N pA(R)
in (Xo + ag)(k) is in fact equal to the image of (X7 + a1)(R1) NpA1(R1).

6.2. Let ps denote multiplication by p on A, Y the proper, flat R-curve which is set wise equal to
the preimage of X under p4 and Y the normalisation of Y. We then see under the conditions of
6.0 that the special fibre Yy of Y is irreducible.

Proposition 6.2.1. Under the hypotheses of 6.1.1 Yy is not reduced (i.e. appears with multiplicity
>1).

Let © € X(R) N pA(R). Then, apart from a finite number of points x that, after restricting to
the generic fibre, pass through the singular points of X, the points of pA(R) N X (R) are precisely
the images of points of X (R). Corollary 6.1.1 is thus equivalent to the fact that there are only a
finite number of points of Yy(k) which lift to points of ¥ (R). This condition is equivalent to the
fact that Yp is not reduced; moreover, when Yj is not reduced, the only points of Yy which lift to
points of ?(R) are the points y of Yy which are singular in Y (i.e. points such that ﬁfﬂy is not
regular).

Remark 6.2.2. We could give a direct proof of 6.2.1, valid under the assumptions of 6.0 and the
condition e < p — 1, then deduce 6.1.1. However, the approach presented is more elementary and
gives a relatively explicit bound and lends itself better to replacing X by a translate. Nevertheless,
it would be interesting to study the singularities of Y.

6.3. In 5.3 we introduced the rational torsion 7" of A.

Theorem 6.3.1. Under the hypotheses of 6.1.1, for all a € A(K), T' N (X + a)(K) is finite and
bounded by po (4.4.1).

This follows immediately from 6.1.1 and from the fact that the points of 7" are in pA(R) and
are determined by their reductions in Ag(k) (5.3).

6.4. We will now consider 77N (X + a)(K), for a € A(K) \ A(K).
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6.4.0. Note first that as X is non-elliptic, the subgroup scheme H; of A formed from translations
that leave X fixed is finite. Let H be the closure in Hj of its generic fibre. Then H is R-flat,
with an action on X that extends to an action on X. As X has fibres of genus > 2, X has no
infinitesimal morphisms and therefore is étale. Let Z C A x A be the inverse image of X under the
morphism:
AxA— A, (a,b)—~b—a

Consider Z N (A x X) as an A-scheme via the first projection. Then the fibre over a point
a € A(K) is X N (X + a). The morphism Z N (A x X) — A, induced by the first projection, is
proper and therefore finite over (A\ H) k. In particular, the cardinality of the fibres over (A\ H)(K)
are bounded, say by pu.

Example 6.4.1. If A is dimension 2 over R, we can take u; to be the self-intersection Xg - X of
Xo in Ao.

Proposition 6.4.2. For all a € A(K)\ A(K), T N (X + a) is finite, with cardinality < pi;.
We note the following corollary of 6.3.1 and 6.4.2:

Corollary 6.4.3. Under the assumptions of 6.1.1, for all a € A(K), T' N (X + a) is finite with
cardinality < p = max(po, p1)-

Proof of 6.4.2. Let B be the quotient of A by the finite étale subgroup H (6.4.0) and let b be
the image of a in B (K). As H is étale, and R complete with algebraically closed residue field, the
hypothesis a € A(K)\A(K), implies b € B(K)\B(K), and consequently, there exists g € Gal(K /K)
such that a9 —a ¢ H.

Moreover, the points of 7" that are contained in X + a, being K-rational, are also contained
in X + a¥ and therefore in (X + a) N (X + a9)(K). By translating by —a, this intersection is in
bijection with X N (X + a9 — a)(K) which is finite of cardinality < 1, as a? — a ¢ H. O

7. PROOF OF THEOREM 1

7.0. Let ¢ be an algebraically closed field of characteristic 0, A an abelian variety over ¢, X a
non-elliptic, proper, integral curve and ¢ : X — A an immersion; X and ¢ defined over c¢. Let
T C A(c) be the torsion subgroup of A(c). We claim that X NT is finite.

7.1. Let B C A be the abelian subvariety generated by the set of differences (z—1'), (z,2’ € X (c)).
Then there exists a € A(c) such that X is contained in B + a. If the image of a in A/B is not
torsion, TN X = (). Otherwise, by translating X by a torsion point, we can reduce to the case
where X C B. . )

Suppose now that B = A. Let X be the normalisation of X, J the Jacobian of X, a:J — A the
Albanese morphism associated with the composition X — X < A, N the kernel, N° the connected
component of the identity of N and h the order of N/N°. The assumption B = A is equivalent to
the fact that a is surjective.

7.2. There exists a Z-algebra of finite type E over ¢, such that X, A and ¢ : X — A extend over
S = Spec(F). By potentially restricting S to a non-empty open set, we can assume the following:

i) A is an abelian S-scheme
ii) X is a proper, flat S-curve, with geometrically integral fibres and 7 : X < A an immersion.
iii) The normalisation X of X is a proper, smooth S-curve with geometric fibres of genus > 2.
Let J be the relative Jacobian of X over S and a : J — A the Albanese morphism associated
with the composition X — X <+ A. Then a is surjective and its kernel N is smooth over S
(note that N is smooth over the generic point 7 of S which is in characteristic 0). Finally, if
N0 is the connected component of the identity of N then N/N? is finite étale of rank h.
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7.3. Let s be a closed point of the fibre of S over Q. Note that the number of torsion points
contained in a geometric fibre of X can only increase by specialisation in characteristic 0, in
particular when specialising from 7 to s. Even if it means changing the original curve, we can
replace S by an open set of the closure of s in S. We therefore reduce to the case where S is a
non-empty open set of the spectrum of the ring of integers of a number field L. Even it means
restricting S, we can assume that in addition to the conditions of 7.2 we have:

iv) S is unramified over Spec(Z) and 2h is invertible in S.

If v is a finite place of S, with valuation ring F,, and completion E\v, then v divides a prime
p and if R denotes the completion of the maximal unramified extension of F,, R is of the type
considered in 5.0 with e = 1. If we abuse notation and denote again by X and A the preimages of
X and A under F — R, then X and A satisfy the conditions of 4.4.1.

Proposition 7.3.1. Let [ be a prime and T the l-primary component of the torsion of Ar. Then
there exists an integer v; having the following property: for any algebraically closed extension L' of
L and for all a € A(L"), Ty N (X + a)(L') is finite and of cardinality < v;.

Indeed, choose a finite place v over F which divides some prime p # [. From this we obtain
a local ring R and let K be the algebraic closure of its field of fractions. Then the I-primary
component of the torsion T' of A(K) is contained in the p/-torsion T/, and a fortiori in the rational
torsion 7" relative to R (5.3). By 6.4.3, there exists v, such that for all a € A(K), the cardinality
of Ty N (X + a)(K) is finite and bounded by v;.

If now L’ is an algebraically closed extension of L, even if it means enlarging L', we can assume
K C L' Leta€ A(L'). Then a is in A(S") where S’ is the spectrum of a K-algebra of finite type
over L'. Let s’ be a point of S'(K). Then, by the previous specialisation argument, we can pass
from the generic point of S, to the point s’, and return to the case where a € A(K). Hence the

proposition.
Remark 7.3.2. Proposition 7.3.1 can also be obtained directly from results of Bogomolov [1].

7.4. To complete the proof of Theorem I, we choose a finite place v of F, corresponding to a ring
R. Suppose R has residue characteristic p; K is the algebraic closure of the field of fractions of K
of R, and G the Galois group of K /K.

As e =1 and p # 2, we have e < p — 1 and we can decompose the torsion T of Ag into
T=TT" (5.3), where T" is the rational torsion and 7" is the ramified torsion contained in the
p-primary component of T'. We recall the finiteness results already obtained:

i) There exists an integer p, such that for all a € A(K), T N (X + a)(K) has cardinality < u
(6.4.3). ) )

ii) There exists an integer v, such that for all a € A(K), T N (X + a)(K) has cardinality
bounded by v, (applying 7.3.1 with [ = p).

Let z € TN (X + a)(K). We have z = 2’ + 2", with 2’ € T'(K) and 2" € T"(K).

Then 2" is a point of 7" N (X —z)(K). As 2’ and X are defined over K and as T" is stable under
G, it follows that the orbit of 2” under G is contained in T” N (X — 2/)(K). Then by ii) above,
this orbit has at most v, elements. It then follows from 5.2.2 that the order of z” is bounded,
independently of 2/, i.e. there are only finitely many possibilities for the element z”.

Moreover, for a fixed 2", 2’ € T'N(X —z")(K) therefore takes at most u distinct values according
to i) above. Overall, there are only many finitely many decompositions = = 2/ + 2.

8. THE INDUCTIVE SYSTEM X,

8.0. In this section, preliminary to the study of Lang’s conjecture; L is a field of characteristic 0,
A an abelian L-scheme and X a proper, geometrically integral, non-elliptic curve contained in A,
defined over L. We denote by L an algebraic closure of L. We saw in 6.3 that only a finite subgroup
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H of A acts on X by translation. If B = A/H and if Y is the image of X in B, then Y is not fixed
by any non-zero translation of B.

8.1. For an integer n > 0, let n4 denote the multiplication by n map on A, , A the kernel, X,, the
image of X under n4 and S, the singular locus of X,,. In particular, X = X; and S is the singular
locus of X. For n|n’, multiplication on A by n’/n induces a map jf{/ : X, = X, so that we obtain
a filtered inductive system (X, jﬁl) indexed by integers > 0, endowed with order relations given
by divisibility.

Proposition 8.1.1. Suppose that H = 0 (8.0). Then, for alln > 0, the morphism X — X,, induced
by n4 is birational. In particular, if x € X (L) is such that nx € A(L), then, either v € X (L) or
nx € Sp(L).

Indeed, let Y, be the preimage of X,, under n4, so that Y;, = X, is étale and X is an irreducible
component of Y;. To establish the first part, even if it means replacing L by L we can assume
L to be algebraically closed. Then Y;, — X, is an étale Galois covering with group ,A(L); this
group acts transitively on the irreducible components of Y;, and since H = 0, the stabiliser of the
component X is 0, thus ,A(L) also acts freely on the set of components. It follows that each
component is of degree 1 over X, hence the first assertion; the second follows immediately.

Remark 8.1.2. The singularities of X,, are the images of the singularities of Y,,, thus consisting of,
on one hand, the singularities S; of X and, on the other hand, the images in X of the points of Y,
that lie in multiple components.

We note the following corollary of Theorem I:

Corollary 8.1.3. The fibres of the canonical map X (L) — h%m X, (L) are finite.

Indeed, let x € X(L); even if it means translating by —nx on X, we may reduce to the case
x = 0. Then the fibre of X(L) — lim Xn(L) over 0 is the torsion lying on X, thus is finite by
n

Theorem 1.

8.2. Write R, K, K, G asin (5.0) and let A and X be R-schemes satisfying the conditions of (6.0).

Proposition 8.2.1. The set of € X(K) \ X(K) for which there exists an integer n > 0 with
nz € A(K) is finite.

Let H be the étale subgroup scheme (6.4.0) of A formed of translations under which X is stable
and let Y be the image of X in B = A/H. Since H is étale and R is complete with algebraically
closed residue field, a point of A(K) has image in B(K) if and only if it is a point of A(K). We
then replace X by Y and A by B, and to establish 8.2.1 we suppose H = 0.

Let z € X(K)\ X(K) such that nz € A(K). Write n = p"m where (m,p) = 1. Since
multiplication by m on A is étale, the previous argument shows that p"z € A(K) and we can
restrict to the case where n = p".

We again take the exact sequence of p-divisible groups over R of 5.2 (1) and suppose for sim-
plicity that A” = (Ape)int, A" = (Apo)g. Finally, let A, A, A" be the respective kernels of
multiplication by p” on A, A’, A”. We then have an exact sequence of finite, flat group schemes
over R:

0—,A— A — A" -0
so that, if A is the abelian R-scheme quotient of A by A", we have a factorisation of (p")4 :
A2 A 2 AL Since v, is étale, then again u,.(zZ) € A7) (K).
Then let v, be an integer > 0 as in 7.4 ii) and let ng be an integer such that p"® > v,. Denote
by n the smallest integer such that, if a” is a torsion point of A”(K) with order > p™0, then
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the orbit of a” under G has cardinality > v, (5.2.2). Suppose m = p"0Fm . We then prove that
mZ € A(K). Then, by 8.1.1, we will then have that mz € S,,,(K), which leaves only a finite number
of possibilities for z.

Note that the fibre of u, : A — A(") over a rational point u,(Z) is a K-torsor P, under the
group scheme A%, the generic fibre of | A”. The point z € P.(K) has an image x in the scheme
Py. Let K(z) be the residue field of x. From the definition of v, , the degree h of K(z) over
K is < v,. We write h = hip where (p,h1) = 1. We then have n; < ng by the definition of
ng. It follows from [9, Prop. 6, p. 127] that the torsor P, is trivialised by multiplication by h and
thus by multiplication by p™ (since ,A”(K) is a p-group), and by multiplication by p"°. We thus
obtain a K-morphism from P, to the trivial torsor ZA%. Let y be the image of  in  A7%. We
have [K(y) : K] < [K(z) : K] < vp. It then follows from the definition of n{ that y is a point of

! A% N Al Finally, the image of 2 under multiplication by m = p"0t70 is indeed a rational point.

9. AROUND THE CONJECTURE OF SERGE LANG

9.0. In this section, we reuse the notation L, L, A, X of 8.0. We denote by G the Galois group of
L/L. Let T' be a subgroup of finite type of A(L). We denote by I" the subgroup of A(L) of division
points of I

[ ={z € A(L) | 3n > 1 such that nz € I'}
We then have an exact sequence of groups with an action of G:

(1) 0—-T(L)—-T—=V =0

where T'(L) is the torsion subgroup of A(L) and V is the Q-vector space I'®z Q on which G acts
trivially.

We will study the finiteness properties of I' N X(L) and of the subgroup of I' generated by
[N X(L). We first study the case where L is a local field, then the case where L is an extension
of finite type over Q.

9.1. Let R, K, K, k be as in 5.0 and let A and X satisfy conditions i) and ii) of 6.0. Finally, let T’
be a subgroup of finite type of A(K) = A(R) and I' C A(K); the group of division points of I. We
denote by I the subgroup of T' generated by I'N X (K), I'"(K) = I"N A(K) and T the subgroup of
A(K) generated by I' N X (K'). We then have the inclusions:

rCcr'(K)cr’

Theorem 9.1.1. Under the hypotheses above, we have the following finiteness properties:
i) The group T/T is of finite type.
ii) The image of T N X(K) =T N X(R) in X (k) is finite and the image of I'(K) in A(k) is a
group of finite type.
iii) The torsion subgroup of T" is finite.

Proof of i). The group /T is generated by the image of I' N (X (K) \ X(K)), which is a finite set
by 8.2.1 thus I/ is of finite type. O

To establish ii), consider ['(K) = ' N A(K).
Lemma 9.1.2. The group I'/p[(K) is finite.
Indeed, we have the exact sequence (1) of 9.0:

0-T(K)—=T—=V-—=0
Taking the invariant subgroups under the Galois group of K /K, we obtain the exact sequence:
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0—T(K)—»T(K)—=W =0

where W is the image of ['(K) in V.

To establish the lemma, it suffices to show that T'(K)/pT(K) and W/pW are finite. But W is
a subgroup of V, finite dimensional over Q, thus W/pW is finite. Moreover, T'(K), the group of
torsion points of A(K), is the direct sum of a finite group and a p-divisible group (denoted by 7"
in 5.3), thus T(K)/pT(K) is finite.

Let then ~;, i € I, be a finite family of representatives in T'(K) of T'(K)/p['(K). Denote by
X; the curve X — ; the translation of X by —v;. Then, for each element of ['(K) write v =
vi + pa, for a suitable choice of i and a € A(K). If moreover « is in X(K), pa = v — ~; is in
Xi(K)NpA(K) = Xi(R) NpA(R). By 6.1.1, the image of X;(R) N pA(R) in X;(K) is finite, thus
the image of T'(K) N X (K) in X (k) is finite. Since ['(K)N X (K) =T'N X (K), we have established
the first part of ii). Since I' N X (K) is generated by the group I' by definition, we then deduce that
the image of I in A(k) is a group of finite type. Moreover, it follows from i) that I'(K)/T is a
group of finite type. Combining these results, we then deduce that the image of I'V(K) in A(k) is
of finite type, hence ii).

Proof of iii). Taking into account i), it suffices to show that the torsion subgroup of I'(K) is finite.
But, the specialisation map A(R) — A(k), restricted to torsion points, has a finite kernel (and even
is injective if p # 2), thus iii) follows form ii). O

Remark 9.1.3. i) Considering the integral closure R of R in K which is a valuation ring (non-
discrete) with residue field k, we define a specialisation map A(K) = A(R) — A(k). It then
follows from assertions i) and ii) of 9.1.1 that the image of T in A(k) is a group of finite type,
and it follows from the proof of 9.1.1 that the image of [' N X (K) in X (k) is finite.

ii) Under the hypotheses of 9.1, suppose that the restriction of the specialisation map A(K) —
A(k) to I is injective, then 9.1.1 ii) implies that I' N X (K) is finite. Let us point out, without
proof, that this remark leads to a new proof of the Mordell conjecture over function fields of
characteristic 0.

9.2.

Theorem 9.2.1. We take the hypotheses of 9.0 and suppose further that L is of finite type over
Q, so that M = A(L) is a group of finite type. Let H be the finite subgroup scheme of A formed by
the translations under which X is stable (6.3) and set B=A/H,Y = A/H, N = B(L). Then:
i) The subgroup of M generated by M N X (L) is of finite type.
i) NN (Y(L)\Y(L)) is finite.
i) M N X (L) is finite if and only if Y (L) is finite, that is to say if and only if the curve Y
satisfies the Mordell conjecture over the field L.
iv) The inductive system lim Sn(L) of (8.1) is stationary.
n

Note that assertion iii) shows that the conjecture of Serge Lang [5] follows from the Mordell
conjecture for curves. Specifically, we have the following result:

Corollary 9.2.2. Let ¢ be an algebraically closed field of charcteristic > 0, A an abelian variety
over ¢, X a non-elliptic, proper, integral curve in A, Y the curve X/H where H is defined as in
9.2.1. Let I' be a subgroup of finite type of A(c) and let L be a subgrield of ¢, finite type over Q,
such that A and Y are defined over L and that T C A(L). Then if Y (L) is finite, TN X (c) is finite.

We prove the main assertion i) of 9.2.1. Let M’ be the subgroup of M generated by M N X (L).
Note that M’ is unchanged if we replace L by any finite extension. We can thus suppose that
X (L) # 0. Replacing A by an abelian subvariety, we can suppose that A is generated by the
differences of points of X.
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Let E be a Z-algebra of finite type, contained in L, with field of fractions L and let S = Spec(FE).
Even if it means replacing S by a non-empty open subset, we can assume that X and A extend
to S-schemes (denoted again by A and X) that satisfies conditions i), ii) and iii) of 7.2. On the
other hand, we can no longer reduce to the case where L is a number field. If we restrict S, we can
suppose that the following condition holds:

(iv)’ S is smooth over Spec(Z) and 2h (or h as in 7.1) is invertible in S.

The image of S in Spec(Z) is a non-empty open set. Let then p € Spec(Z) be a prime in the
image of S and let n be the generic point of the fibre of S over p. Condition (iv)’ implies that the
local ring Og, of S at 7 is a discrete valuation ring, the maximal ideal of which is generated by
p. By [3, Ch. III, 10.3.1], we can extend Og, to a discrete valuation ring R, so that the maximal
ideal of R is again generated by p and the residue field k of R is an algebraic closure of the residue
field of Og,,.

Suppose further that R is complete, then R is of the type considered in 5.0 and the field of
fractions K of R is an extension of L. Moreover, the preimages of A and X under the base change
Spec(R) — S satisfy the conditions i) and ii) of 6.0.

We can then apply 9.1.1 and take T' to be the group A(L) C A(K). The group denoted by I' in
9.1.1 is then equal to the group M’. Then by 9.1.1 iii), M’ is a torsion subgroup that is finite.

Let n be an integer > 1 that annihilates the torsion of M’. It follows, for example by the exact
sequence (1) of 9.0 with I' = A(L), that nM’ is identified with a subgroup of A(L), thus is of finite
type and consequently M’ is of finite type.

We now prove assertion ii) of 9.2.1. Assertion i) applied to the curve Y in B shows that the
subgroup N’ of N generated by N NY (L) is of finite type. Let n be an integer > 1 that annihilates
the torsion of N’. As above we see that nN’ C B(L), thus if y € Y(L) N N, ny € B(L). Since
the curve Y is not stable under any non-zero translations of B, it follows from 8.1.1 that (Y (L) \
Y (L)) N N is finite, hence ii).

Proof of iii). If M N X (L) is finite, it is clear that Y'(L) is finite. Conversely, if Y'(L) is finite, it
follows from ii) that N NY (L) is finite, thus M N X (L) (which is contained in the preimage of
N NY (L) under the projection A(L) — B(L)) is also finite. O

Proof of iv). To analyse the inductive system hg Sn(L), we can restrict ourselves to integers n
n

that are multiples of the order of the finite group H (L), which allows us to replace X by Y and
thus we suppose H = 0.
Let Soo(L) = lim Sn(L). By 8.1.3, to see that the inductive system S, (L) is stationary, it suffices

n

to show that S (L) is finite. Note that a point of So(L) belongs to at least one of the three sets:

a) The image of M N (X (L) \ X (L)), which is a finite set by 9.2.1 ii) and the fact that H = 0.
b) The image of S1(L) which is clearly finite.
¢) The set of images of points x,, € S,(L), n > 1, such that the fibre of X — X,, over z,
contains the rational points z and 2/, with z — 2’ of exact order n. Since the torsion group
of A(L) is finite, only a finite number of integers n arise, thus the latter type concerns only
a finite number of points of Sy (L).
These considerations imply that So (L) is finite and complete the proof of 9.2.1.
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