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Let A be an abelian variety dened over C, T the torsion subgroup of A(C) and X a proper,
integral, non-elliptic curve in A.

Thorm I. The set T ∩X(C) of torsion points on X is nite.

Recall that the analogue of this statement, where we replace T by its n-primary component
(n > 1 an integer), was established by Bogomolov [1, Th. 3].

The idea of the proof is as follows:
Assume for simplicity that X is smooth and that X and A are dened over a number eld L.

Let OL denote the ring of integers of L. Let U be a non-empty open subset of Spec(OL) such
that there exists an abelian U -scheme A with generic bre A and a curve X in A , that is proper
and smooth over U , with generic bre X. Let J denote the relative Jacobian of X over U and
a : J → A the Albanese morphism associated to the inclusion X in A . Possibly by restricting
U , we assume the following conditions hold:

i) U is unramied over Spec(Z).
ii) Ker(a) is smooth over U and the number of connected components n of the geometric bres

of Ker(a) is invertible in U .

Let v be a closed point of U over a prime p and let OL,v be the completion of the local ring of

v in U . By passing to the maximal unramied extension of OL,v, then completing, we obtain a
complete discrete valuation ring R, with algebraically closed residue eld k of characteristic p and
fraction eld K; extending L. The essential part of our proof is the following local result:

Thorm II. For all a ∈ A (R) the points of (X +a)(k) that lift to points of (X +a)(R)∩pA (R)
are nite in number, and uniformly bounded with respect to a.

This statement immediately leads to a signicant part of Theorem I: the torsion points of
X + a, of order coprime to p (which we will refer to as p′-torsion), are nite in number, and
bounded independently of a ∈ A (R).

Changing the point v in U , we deduce an analogous result for the p-primary torsion. This comes
from the niteness of the p′-torsion and the uniform niteness after translation of the p-primary
torsion, it is then easy to deduce Theorem I (cf. 7.4).

Theorem II can be proved using dierential calculus modulo p2, the idea is as follows. Changing
notation, let A and X be the preimages of A and X after base change Spec(R) → U to the point
v. Let A0 and X0 denote the special bres of A and X over RpR = k, and let A1 and X1 be the
restrictions of A and X over Spec(R1) where R1 = Rp2R. Let I0 denote the sheaf of ideals of X0

in A0 and N0 = (I0I
2
0 )

∨ denote the corresponding normal sheaf.
To establish Theorem II we have to analyse the image of X1(R1) ∩ pA1(R1) in X0(k). To do so

we consider the blow-up E of A with centre X0 with special bre E0 and V0 the smooth open locus
of E0 over X0. In fact V0 is an ane space associated to the bre bundle N0: it is the ane space
which controls the liftings of X0 in A1. Locally, we can choose coordinates x, y1, , yn on A, such
that X0 is given by equations p = 0, y1 =  = yn = 0; and V is given by coordinates x, z1, , zn
satisfying pzi = yi. Let h0 : V0 → X0 denote the canonical projection. Let (A1, X0)(R1) denote
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the subset of A1(R1) of points that reduce modulo p to points of X0(k). We then obtain a map τ
allowing the following diagram to commute:

(A1, X0)(R1) V0(k)

X0(k)

τ

can h0

The image of X1(R1) under τ (resp. (A1, X0) ∩ pA1(R1)) gives the rational points of an integral
curve X ′

0 (resp. Y ′
0) in V0. To show that the image of X1(R1) ∩ pA1(R1) in X0(k) is nite, it

suces to show that X ′
0 ∩Y ′

0 is nite, i.e. X ′
0 and Y ′

0 are distinct. Now, h0 induces an isomorphism

X ′
0

∼−→ X0 (X ′
0 is the trivialisation of the bundle V0 associated to the lift X1 of X0 in A1), and we

show that the radicial degree of the projection Y ′
0 → X0 is > 1.

We study the various lifting properties of h : V0 → X0 in sections 2 and 3. In section 2 we
study the properties of τ which are elementary in nature. In section 3, we study a lifting property
connected to characteristic p > 0 which is useful for understanding Y ′

0 ; it’s here where we justify
the introduction of V0. To study collections of points of the form pA1(R1) ∩ (A1, X0)(R1) one
might have thought to use the Greenberg functor, but this hides the radicial phenomena which are
essential for us, and are highlighted by the use of V0.

The calculation of the radicial degree of Y ′
0 → X0 is done in section 4 with some preliminary

results in section 1. Theorem II is proved in 4.4.1 and 6.1.1. Note that the proof, in principle,
provides an upper bound for the cardinality of the image of (X + a)(R) ∩ pA (R) as a function of
the bre bundle N0, which will only be tractable when A is an abelian surface.

The method presented here has the disadvantage of treating the p′-torsion and p-primary tor-
sion separately. Recently, Coleman has proposed another approach, also p-adic, which avoids this
distinction. It should lead to a new proof of Theorem I and has allowed us to determine exactly
the torsion points on certain Fermat curves.

Let’s return to the initial problem of X in A over C. In [5] Serge Lang poses the following
problem: given a subgroup Γ in A(C) of nite type, and the group Γ̄ of division points of Γ, is
Γ̄ ∩X nite?

Theorem I provides an answer to this question when Γ = 0; a positive answer in general is, a
priori, a stronger result than Mordell’s Conjecture. As another application of Theorem II, we show
that in fact Mordell’s conjecture implies Lang’s conjecture (for more precise statements cf. 9.2.1
and 9.2.2).

Finally, let us point out that Theorem I has natural extensions in the case where X is replaced
by any subvariety of A. We will study these generalisations later in the article.

1. Curves embedded in abelian varieties in characteristic p > 0

1.0. In this section, k is an algebraically closed eld of characteristic p > 0. Let S be a k-scheme.
We denote by ΩS the sheaf of dierential forms of S of degree 1. For any integer m ∈ Z, we
write σm : Spec(k) → Spec(k) for the morphism which sends a ∈ k to ap

m
and write S(m) for the

k-scheme given by base change via σm (in other words, if S is ane, dened by polynomials fi = 0

in the ring k[Tλ], then S(m) is given by polynomials fi after the coecients are raised to the power
of pm). We then obtain a relative Frobenius morphism:

F : S(m) → S(m+1)

which is a radicial k-morphism; by iterating, we obtain a k-morphism F n : S(m) → S(m+n) for all
n ≥ 0. In particular, we get k-morphisms Fn : S(−n) → S and Fn : S → S(n).

1.1.
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1.1.1. Let A be a k-abelian variety and i : X → A an immersion of a proper, integral k-curve. Let
α : X̃ → X be the normalisation of X and dene ĩ := i ◦ α : X̃ → A. Let JX̃ be the Jacobian of X̃

and a : JX̃ → A the Albanese morphism associated to ĩ.

Dnition 1.1.2. We will say that the immersion i : X → A satises the property (∗) if the
following conditions are met:

i) The morphism a : JX̃ → A is surjective with kernel N smooth over k.

ii) The group of connected components NN0 of N is of order coprime to p.

Remark 1.1.3. i) The condition (∗) is clearly satised if a is an isomorphism, in particular if
X is smooth and i : X → A is the usual embedding of X in its Jacobian.

ii) Note that part i) of (∗) is equivalent to the fact that the map of sections:

H0(A,ΩA) → H0(X̃,ΩX̃)

induced by ĩ is injective. Then condition (∗) is equivalent to the fact that the map:

H1
dR(A,ΩA) → H0

dR(X̃,ΩX̃)

on de Rham cohomologies is injective (we will not use this fact in what follows).

1.2.

1.2.1. Let u : B → A be an isogeny of abelian varieties, with kernel G of order a power of p and
G = Gét × Ginf the canonical decomposition of G into an étale group and an innitesimal group.
The preimage B ×A X, of X under u, is not reduced as soon as the dimension of A is ≥ 2. Let
Y be the unique reduced curve that is set-wise equal to B ×A X and v : Y → X the morphism
induced by u. Even if X is smooth, this does not guarantee that Y is smooth; however, smoothness
is preserved if Ginf is the kernel of an iteration of Frobenius morphisms on B (this will be the case
if either of the following two conditions are fullled: i) B = A and u is the multiplication by p map;

ii) A is ordinary or A is the product of supersingular elliptic curves). We denote by β : Ỹ → Y the

normalisation of Y , j : Y → B the canonical immersion, j̃ := j◦β and ṽ : Ỹ → X̃ the normalisation
of v.

Proposition 1.2.2. Suppose i : X → A satises (∗) (1.1.2). Then:

i) The curve Y is integral and it’s separable degree over X is the rank of Gét.
ii) The radicial degree of Y over X is ps where s is the smallest integer such that F s annihilates

Ginf.

The fact that Y is integral (or equivalently Ỹ is connected) follows from part ii) of (∗): indeed
this implies that the bre product B ×A JX̃ induced by u and a is connected and we reduce to the

classical case X = X̃ and A = JX .
To establish ii), we can, even if it means dividing B by Gét, reduce to the case G = Ginf. Let p

r

be the radicial degree of Y relative to X. As G is annihilated by F s, there is a factorisation of F s

on B:
F s : B

u−→ A → B(s)

and thus we get a factorization of F s on Y :

F s : Y
v−→ X → Y (s)

when r ≤ s. The reverse inequality follows from the following lemma:

Lmma 1.2.3. Suppose that u : B → A is a radicial isogeny, Y → X is of degree pr and that
i : X → A satises condition (i) of (∗). Then we get a canonical factorisation:

F r : A(−r) → B
u−→ A

and in particular G = Ginf is annihilated by F r.
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We can identify Ỹ with X̃(−r) and ṽ : Ỹ → X̃ with F r. The Jacobian of X̃(−r) is J
(−r)

X̃
. We

then deduce from the commutative diagram:

X̃(−r) Y

X̃ X

vF r

(where the horizontal arrows are normalisations), a commutative diagram of abelian schemes:

J
(−r)

X̃
A(−r)

B

JX̃ A

a(−r)

b

u

F r F r

where b is the Albanese morphism associated to j̃ : X̃(−r) = Ỹ → B. But Ker(a(−r)) = N (−r) is
a smooth group scheme, so its image under b is a smooth subgroup scheme of B. Again the image
is contained in Ker(u) = G which is assumed to be radicial, this image is zero and we obtain a

morphism c : A(−r) → B such that b = c ◦ a(−r). But then as a(−r) is surjective, F r : A(−r) → A
factors through u ◦ c, then the lemma follows.

1.3.

1.3.1. By translation, we identify the tangent space at any point of A to the tangent space at the
origin and we write PA for the associated projective space. The curve X embedded in A by i has
an associated Gauss map: if x is a smooth point of X, we can associate to it a point of PA dened
by the tangent to X at x. We thus obtain a morphism from the smooth locus of X to PA which
canonically extends to a morphism γX : X̃ → PA. Let I be the sheaf of ideals of OA which denes
X, then we obtain an exact sequence:

(1) I I 2 → ΩAX → ΩX → 0

Pulling back this sequence via α : X̃ → X, we obtain an exact sequence on X̃:

α∗(I I 2) → ĩ∗(ΩA) → α∗(ΩX) → 0

If we divide α∗(ΩX) by its torsion subsheaf, then we obtain an invertible sheaf Ω̃X ; a quotient

of ĩ∗(ΩA), this denes a map γX : X̃ → PA. So we have an exact sequence of locally free sheaves

on X̃:

(2) 0 → ˜N ∨
X → ĩ∗(ΩA) → Ω̃X → 0

where ˜N ∨
X is the subsheaf of ĩ∗(ΩA) generated by the image of α∗(I I 2). Note that Ω̃X is

simply the image of the map of dierentials α∗(ΩX) → Ω̃X associated to α. In particular, the

degree of γX , which is the degree of the invertible sheaf Ω̃X , is at most 2gX̃ − 2 where gX̃ is the

genus of X̃. Of course, when X is smooth, Ω̃X = ΩX and ˜N ∨
X = I I 2 is the normal sheaf.
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1.3.2. Let’s return to the situation of 1.2.1 where we have an isogeny u : B → A. The immersions
i : X → A and j : Y → B correspond to Gauss maps: γX : X̃ → PA and γY : Ỹ → PB .

The map γX is constant if and only if Ω̃X = OX . This is the case when X is elliptic or if X is
stable under translations by a radicial subgroup of rank p (for example, if i : X → A satises (∗)
and if we take a radicial isogeny u : B → A of degree p, then γY is constant). If i : X → A satises

(∗), H0(X, Ω̃X) is a k-vector space of dimension at least the dimension of A, in particular, γX is

non-constant if the genus of X̃ is at least 2.

Proposition 1.3.3. Suppose the isogeny u is radicial and i : X → A satises (∗) (1.1.2) and that

X̃ is of genus ≥ 2. Then we have:

degree(γY ) ≤ degree(γX)

In fact, if pr is the degree of Y → X we have, as in 1.2.3, a factorisation:

F r : A(−r) w−→ B
u−→ A

Then w induces a birational map, we denote again by w : X(−r) → Y . Let X̃(−r) = Ỹ be the
common normalisation of X(−r) and Y . Then using the notation of 1.3.1, we obtain inclusions Ω̃Y ⊂
Ω̃X(−r) ⊂ ΩX̃(−r) and therefore degree(γY ) ≤ degree(γX(−r)). But degree(γX(−r)) ≤ degree(γX) by
translating by the isomorphism σr (1.0), the proposition then follows.

Corollary 1.3.4. Let us take the isogeny u to be the multiplication by p map on A, denoted pA.
Then i : X → A satises (∗) and if X has genus ≥ 2, then the images of the maps γY and γX ◦ pA
on Y → PA only have nitely many points in common.

As Y is reduced, it suces to show γX ◦ pA ̸= γY and, a fortiori, we can do this by showing

the maps have dierent degree. Let A
v−→ B

u−→ A be the factorisation of pA where v is étale
and u is radicial of degree pr. As pA factors through the Frobenius of A, we have r ≥ 1. The
two maps γX ◦ pA and γY are factorisations of v, so replacing pA with u : B → A, we reduce
to the case of a radicial isogeny. We then have that degree(γY ) ≤ degree(γX) by (1.3.3). But
degree(γX ◦ u) = prdegree(γX) > degree(γX) (since r ≥ 1 and degree(γX) ≥ 1) thus:

degree(γY ) < degree(γX ◦ u)

1.3.5. In this subsection we reformulate Corollary 1.3.4 in terms of sheaves. We use the notation
of 1.2.1 with u = pA.

Let ω1, ,ωd be a basis for ΩA and [p] : p∗A(ΩA)
∼−→ ΩA the isomorphism induced by the identity

on global sections; i.e. [p](p∗A(ωi)) = ωi, for i = 1, , d. Pulling back along j : Y → A we obtain an

isomorphism [p]Y : (i ◦ u)∗(ΩA)
∼−→ j∗ΩA which ts in the following diagram:

(1)

v∗(I I 2) (i ◦ v)∗(ΩA) v∗(ΩX) 0

J J 2 j∗(ΩA) ΩY 0

[p]Y

in which the rows are exact, the rst being the pullback of the exact sequence (1) of 1.3.1 by v
associated to γX , and the second being the analogue of (1) for γY .

Taking the pullback of this diagram by the normalisation β : Ỹ → Y and replacing the exact
sequence (1) of 1.3.1 by the exact sequence (2), we obtain the following diagram with exact rows:
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(2)

0 ṽ∗( ˜N ∨
X ) (̃i ◦ ṽ)∗(ΩA) ũ∗(Ω̃X) 0

0 ˜N ∨
Y j̃∗(ΩA) Ω̃Y 0

[p]Ỹ

where [p]Ỹ is the isomorphism obtained by pulling back [p] along j̃. By composing, we obtain
the following morphisms from the diagrams:

(3) γ : v∗(I I 2) → ΩY and γ̃ : ṽ∗( ˜N ∨
X ) → Ω̃Y

Of course γ is identied with γ̃ on the smooth locus of Y that lies above the smooth locus of X.
Let’s describe γ locally. Let a be a local section of I and ā it’s image in I I 2 and da =


i fiωi

the dierential of a. Then the image of ā in ΩAX under the morphism in 1.3.1 (1) is simply daX .
Then:

(4) γ(v∗(ā)) =


i

(fi ◦ u)ωiY

Corollary 1.3.6. Under the hypotheses of 1.3.4, the maps γ and γ̃ are non-zero.

Since ˜N ∨
X is locally free and as γ and γ̃ coincide over a non-empty open set, it suces to show

that γ̃ ̸= 0. Now, if we had γ̃ = 0, [p]Ỹ would induce, by passing to the quotient in (2), an

isomorphism ṽ∗(Ω̃X)
∼−→ Ω̃Y and we have already observed that γY and γX ◦ pA do not have the

same degree (cf. 1.3.4).

Remark 1.3.7. The same degree argument show that Corollaries 1.3.4 and 1.3.6 still hold if we
assume X is smooth and of genus ≥ 2, even if i : X → A does not satisfy (∗). The condition (∗)
is used, in part, to treat the case when X is singular, and on the other hand to explicitly compute
degrees (cf. 1.2.2).

2. Notes on the normal bundle

2.0. In this section, R1 is a local ring with maximal ideal m, residue eld k; we suppose that m2 = 0
and that m is a 1-dimensional k-vector space; and choose a generator π of m. In what follows, we
will take R1 to be the quotient of a discrete valuation ring by the square of its maximal ideal. We
denote k-schemes with an index 0, in particular, if S1 is an R1-scheme, S0 denotes the k-scheme
S1 ×R1 k, induced by reduction modulo m on S1.

2.0.1. Let S1 be an R1-scheme. Multiplication by π induces a morphism of OS0-modules θ :
OS0 → πOS1 = πOS0 . We will frequently use the fact that S1 is at over R1 only if θ is an
isomorphism [2, Ch. III, §5, Th. 1]. When this condition is met, we will denote by π−1 the inverse
of θ.

2.1. Let S be a scheme and M a quasi-coherent OS-module. Recall that the vector bundle V(M ∨),
associated to the sheaf M , is the ane S-scheme dened by the total space of the symmetric
algebra of M ; it represents the functor sending f : T → S to the set of morphisms of OT -modules
u : f∗(M ) → OT .
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2.2. For the remainder of this section, we consider an R1-scheme A1 and a closed subscheme X0

of A0 = A1 ×R1 k. Let I (resp. I0) be the ideal sheaf of OA1 (resp. OA0) that denes X0. Then
the image of π in OA1 is contained in I and we obtain exact sequences:

(1)

πOA0 I I0 0

πOX0 I I 2 I0I
2
0 0

Considering the vector bundle V(I ∨) over the scheme A1 and let V(I ∨)∗ denote the subscheme
of V(I ∨) that represents the following functor: for all A1-schemes f : T → A1, V(I ∨)∗(T ) is the
subset of V(I ∨)(T ) given by morphisms u : f∗(I ) → OT that satisfy u(π) = 1 (where we abuse
notation using π to mean the canonical image of π in f∗(I )).

If u : f∗(I ) → OT corresponds to a point of V(I ∨)∗, we then have: 0 = u(π2) = π · 1, so π
annihilates OT . Moreover, I ·OT = u(I ·π) = π ·u(I ) = 0, so I annihilates OT . In other words,
the structural morphism V(I ∨)∗ → A1 factors through X0; in particular V(I ∨)∗ = V((I I 2)∨)∗.
From now on we simply denote V0, for the X0-scheme V(I ∨)∗ and h0 : V0 → X0 for the structural
morphism.

Exampl 2.2.1. i) If A1 = A0, we have π = 0 in OA1 , and therefore V0 is empty. In fact the
most interesting case is when A1 if at over R1.

ii) If A1 is smooth over R1 and if X0 is smooth over k, then h0 : V0 → X0 is smooth. More
precisely, suppose A1 is ane over X0, and dened by a regular sequence in A0 that lift to
elements ti in I . Then there exists unique sections Ti in OA0 , such that ti = πTi (2.0.1) and
V0 is the ane space over X0 with coordinates Ti.

2.2.2. There is a natural action of V((I0I
2
0 )

∨) on V(I ∨)∗. In fact, if f : T → A is an A-scheme,
we deduce from (1) the exact sequence:

f∗(OX0) → f∗(I I 2)
τ−→ f∗(I0I

2
0 ) → 0

Then if u : f∗(I I 2) → OT sends π to 1, for any other morphism u′ with this property we have
a unique decomposition u′ = u + v ◦ τ for a unique map v : f∗(I0I

2
0 ) → OT . This denes the

action of V((I0I
2
0 )

∨) on V(I ∨)∗ and shows that V(I ∨)∗ is formally a principal homogeneous
space under this action [10, Exp. III, p. 13].

2.3. Let S1 be a at R1-scheme and u1 : S1 → A1 an R1-morphism such that u0 : S0 → A0 factors
through X0. This last condition means we have I · OS1 = π · OS1 . Moreover, the atness of S1

ensure that the multiplication by π : OS0 → πOS1 is an isomorphism (2.0.1), hence dening a

morphism of OS1-modules u∗(I )
can.−−→ I ·OS1 = π ·OS1

π−1

−−→ OS0 that sends u∗(π) to 1. This then
corresponds to a k-morphism u′0 : S0 → V0 where f0 ◦ u′0 = u0. We will then say that u′0 is a lift of
u0 through V0.

Let (A1, X0)(R1) be the subset of points of A1(R1) whose image in A0(k) lies in X0(k). The
lifting operation applied to S1 = Spec(R1) gives a canonical map τ : (A1, X0)(R1) → V0(k) that
forms a commutative diagram:

(A1, X0)(R1) V0(k)

X0(k)

τ

h0

When A1 is smooth over R1 and X0 is smooth over k, the map τ is surjective, as can be seen from
using the coordinates in 2.2.1 ii).
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Exampl 2.3.1. Let us return to Example 2.2.1 ii) using the notation ti and Ti. If S1 is a at
R1-scheme and u1 : S1 → A1 an R1-morphism such that u0 factorises through X0, then ti ◦u = πfi
for some unique sections fi of OS0 . Then the lift u′0 of u0 is given by the relations: Ti ◦ u′0 = fi.

2.4. Let X1 be a subscheme of A1, at over R1 such that X1 ×A1 k = X0. Let j1 : X1 → A1

be inclusion and J the corresponding sheaf of ideals in OA1 dening X1. The lift (2.3) of j0 is
a k-morphism j′0 : X0 → V0 such that h0 ◦ j′0 = j0, then j′0 is a section of h0. We have J ⊂ I
and the image of I in the quotient sheaf OX1 = OA1J is πOX1 = πOX0 . If we go back to the
denition of the lift, we nd that j′0 is associated to a morphism of sheaves: I → πOX1 −→ OX0 by
composing the canonical surjection and the isomorphism π−1. In particular, the kernel of this map
is J . Conversely, if we take a section j′0 of h0, it arises from a morphism of sheaves I → OX0

that sends π to 1. Let J be its kernel. Then we have an exact sequence:

0 → OX0

θ−→ OA1J → OA1I → 0

where OA1I = OX0 and where θ(1) is the image of π. If X1 is a subscheme of A1 dened by
J then X0 = X1 ×B1 k is at over R1 (2.0.1). We have then established the following result (well
known in the case where A0 and X0 are smooth over k [4, Cor. 5.4].

Proposition 2.4.1. The lift (2.3) provides a canonical bijection between subschemes X1 of A1,
which are at over R1 such that X1 ×B1 k = X0, and the sections of h0 : V0 → X0.

3. Differential calculus modulo p2

3.0. In this section, we use the notation of the previous section, but assume further that the residue
eld k of R is algebraically closed with characteristic p > 0 and that the generator u of its maximal
ideal m is the image of p. In other words, R1 is the quotient, modulo p2, of a discrete valuation ring
of mixed characteristic, unramied, with algebraically closed residue eld of characteristic p > 0.

3.1. Let u1 : B1 → A1 be an R1-morphism of smooth schemes, such that u0 = u1 ×R1 k : B0 → A0

has zero dierential. Let i0 : X0 → A0 be a closed immersion, Y0 the reduced preimage of X0 in
B0 and j0 : Y0 → B0 the associated immersion. We denote by v0 : Y0 → X0 the morphism induced
by u0 : B0 → A0. Let I (resp. I0) denote the ideal sheaf of X0 in A1 (resp. X0 in A0) and let
J (resp. J0) denote the ideal sheaf of Y0 in B1 (resp. Y0 in B0). We have I · OB1 ⊂ J and
I0 · OB0 ⊂ J0.

If h0 : V0 → X0 is associated to I as in 2.2, then we have a map (2.3) τ : (A1, X0)(R1) → V0(k).
Similarly, let (B1, Y0)(R1) be the preimage of Y0(k) in B1(R1) via the canonical map B1(R1) →
B0(k). Since the dierential of u0 is zero, the map B1(R1) → A1(R1) induced by u factorises
through B0(k). A fortiori, the map (B1, Y0)(R1) → (A1, X0)(R1) induced by u factorises through
Y0(k) via ū : Y0(k) → (A1, X0)(R1). Composing ū with τ , we obtain a map of sets Y0(k) → V0(k).
In this section, we construct a canonical k-morphism v′0 : Y0 → V0 which, on points, is equal to τ ◦ ū.
We will then calculate the dierential of v′0. Putting this all together we obtain a commutative
diagram:

(1)

(B1, Y0)(R1) (A1, X0)(R1) V0(k)

Y0(k) X0(k)

u

ū

v′0

h0

τ

v0
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3.2. Let a and b be sections of OA1 , over an open set U , a0, b0 (resp. a and b and resp. a0 and
b0) their images in OA0 (resp. OB1 and resp. OB0 . As k is perfect and B0 is smooth, and as the
dierential of u0 is zero, a and b are pth powers in OB0 : a0 = αp

0, b0 = βp
0 . Let α and β be lifts of

α0 and β0 in OB1 . Then αp is the unique lift of a0 in OB1 that is a pth power; it is the Teichmuller
lift of a0 which we denote by a∗0. Similarly, let b∗0 = βp. We then have relations:

(2) (ab)∗0 = a∗0b
∗
0; (a+ b)∗0 = a∗0 + b∗0 + pS(α0,β0)

where S(U, V ) is the degree p homogeneous polynomial in Z[U, V ] given by:

S(U, V ) = [(U + V )p − Up − V p]p

Since B1 is at over R1 and a and a∗0 are both lifts of a0, there exists by 2.0.1 a unique section
Φ(a) of OB0 , such that:

(3) a = a∗0 + pΦ(a)

From (2) we deduce the identities:

(4)

Φ(a+ b) = Φ(a) + Φ(b) + S(α0,β0)

Φ(ab) = a0Φ(b) + b0Φ(a)

Φ(p) = 1

Suppose a ∈ I , then a0 = αp
0 ∈ J0 and since Y0 is reduced, α0 ∈ J0 and therefore a0 ∈ J p

0 .
The identities (4) then show that Φ is linear modulo J p

0 and, a fortiori, denes a morphism of
sheaves: u∗1(I ) → OB0J0 that sends p to 1. By the denition of V0 (2.2), the morphism of
sheaves corresponds to a k-morphism v′0 : Y0 → V0. We now show that map τ ◦ ū : Y0(k) → V0(k)
is induced by v′0 (which describes it completely as Y0 is reduced and k is algebraically closed). For
this we note that if f1 : C1 → B1 is an R1-morphism with C1 smooth over R1, and if Z0 is the
preimage of Y0 under f0, then the previous construction of v′0 is functorial with respect to f , i.e.
it associates to f a morphism v′0 ◦ f0 : Z0 → V0. We apply this to the case C1 = Spec(R1) and
for f1 : Spec(R1) → B1 a point of (B1, Y0)(R1). Then Z0 = Spec(k), and the construction above

associates to f1 a unique linear map: I
can−−→ m

p−1

−−→
∼

k therefore corresponding to the lift of f1 in

the sense of 2.3.

3.3. In the remainder of this section, we calculate the dierential of v′0. The denition of V0 =
V(I ∨)∗ (2.2) implies that the relative sheaf of dierentials ΩV0X0

of V0 over X0 is canonically

isomorphic to h∗0(I0I
2
0 ), hence giving an exact sequence:

(5) h∗0(ΩX0) → ΩV0 → h∗0(I0I
2
0 ) → 0

As the dierential of u0 is zero, the dierential of v′0 comes from, by passing to the quotient, the
following map:

(6) δ : (v′0)
∗(ΩV0X0

) = v∗0(I0I
2
0 ) → ΩY0

which we will determine.
Let ā0 be a local section of I0I

2
0 ; the image of a local section a of I . Using the notation of

3.2, with a:

δv∗0(ā0) = dΦ(a)Y0

But according to (3) we have:
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du∗1(a) = u∗1(da) = p(dα0 + dΦ(a))

Then u∗1(da) = pΨ(a) where Ψ(a) is the unique local section of ΩB0 such that

Ψ(a) = dα0 + dΦ(a)

As α0 ∈ J0, we have Ψ(a)Y0 = dΦ(a)Y0 therefore is equal to δv∗0(ā0).
In summary, we have the following result:

Proposition 3.3.1. Under the hypotheses of 3.1, there exists a unique k-morphism v′0 : Y0 → V0,
such that h0 ◦ v′0 = v0 and which, on rational points is equal to the map τ ◦ ū : Y0(k) → V0(k). The
map δ (6) describes the dierential of v′0 and is calculated as follows: let a be a local section of I ,
with image ā0 in I0I

2
0 . Then δv∗0(ā0) = Ψ(a)Y0 where Ψ(a) is the unique local section of ΩB0 ,

such that u∗1(da) = pΨ(a).

4. Applications of calculus modulo p2 to abelian schemes

4.0. In this section R1 is a local ring of the type considered in 3.0.
Let A1 be an abelian R1-scheme, i0 : X0 → A0 = A1 ×R1 k the inclusion of a proper, integral

curve with associated sheaf of ideals I (resp. I0) over A1 (resp. over A0). We denote h0 : V0 → X0

for the X0-scheme V(I ∨)∗ considered in 2.2. Let (A1, X0)(R1) be the preimage of X0(k) in A1(R1)
under the reduction modulo p map A1(R1) → A0(k). Then the lifting operation (2.3) provides a
canonical map τ which makes the following diagram commute:

(A1, X0)(R1) V0(k)

X0(k)

τ

h0can.

4.1. Let pA1 (resp. pA0) represent multiplication by p on A1 (resp. A0). Since the dierential of
pA0 is zero, we are in the situation of the previous section, taking B1 = A1 and u1 = pA1 . Let Y0

be the reduced preimage of X0 under pA0 and v0 : Y0 → X0 the morphism induced by pA0 .
The multiplication map pA1 : A1(R1) → A1(R1) denes, by passage to the quotient, a map

p̄ : A(k) → A1(R1); this induces a map p̄Y0 : Y0(k) → (A1, X0)(R1). The image of p̄Y0 is formed
of the points of pA1(R1) which are lifts of points of X0(k). From 3.3.1, there exists a canonical
k-morphism v′0 : Y0 → V0 that factors as h0 · v′0 = v0 which, on k-valued points, coincides with
τ ◦ p̄Y0 . We then obtain the following commutative diagram:

(1)

Y0(k) (A1, X0)(R1) V0(k)

X0(k)

τp̄Y0

v0
can.

h0

v′0

We will reuse the notation of section 1, except now k-schemes and k-morphisms will be given
an index 0. The closed immersions X0 → A0 and Y0 → A0 correspond to Gauss maps (1.3.2) γX0

and γY0 and a morphism of sheaves γ : v∗0(I0I
2
0 ) → ΩY0 (1.3.5 (3)) that measures the dierence

between γX0 ◦ v0 and γY0 . Moreover, and as v0 has zero dierential, the dierential of v′0 comes
from the map δ : v∗0(I0I

2
0 ) → ΩY0 (3.3 (5)).

Lmma 4.1.1. The maps γ, δ : v∗0(I0I
2
0 ) → ΩY0 coincide.
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Indeed, suppose that ω1, ,ωd is a basis of sections of ΩA1 and a a local section of I with image
ā0 in I0I

2
0 and let da =


i fiωi be the dierential of a. Then according to (4) in 1.3.5, we have:

γ(v∗0(ā0)) =


i

(fi ◦ v0)ωiY0

Moreover, p∗A1
(ωi) = pωi, thus p

∗
A1

(da) = p(


i(fi ◦ pA0)ωi) and consequently, using the notation
of 3.3.1, ψ(a) =


i(fi ◦ pA0)ωiA0 . We deduce from 3.3.1 that:

δ(v∗0(ā0)) =


i

(fi ◦ v0)ωiY0

hence the lemma.
Let Y ′

0 be the scheme-theoretic image of Y0 under v′0 and let h′0 : Y
′
0 → X0 denote the restriction

of h0 to Y ′
0 . As v0 is nite, so is h′0.

Proposition 4.1.2. Suppose that i0 : X0 → A0 satises (∗) (1.1.2) and that the normalisation X̃0

of X0 has genus ≥ 2. Then the map Y0 → Y ′
0 induced by v′0 is generically étale.

Note rst that the property (∗) guarantees that Y0, and thus also Y ′
0 is integral (1.2.2). Moreover,

according to 1.3.6, we can take a non-empty open set U0 of X0 above which X0 and Y0 are smooth
and γ is surjective. By 4.1.1 v′0 is unramied over U0. If we then restrict U0 so that Y ′

0 is also
smooth over this open set, then Y0 → Y ′

0 is étale over U0.

4.2. Let G1 (resp. G0) be the kernel of pA1 (resp. pA0). Then G0 is the product of its connected
component (G0)inf and étale component (G0)ét. However, over R1 we have only a short exact
sequence of at groups schemes:

(1) 0 → (G1)inf → G1 → (G1)ét → 0

where (G1)inf lifts (G0)inf and (G1)ét lifts (G0)ét.
Proposition 4.1.2 implies that the radicial degree of h′0 : Y

′
0 → X0 is equal to the radicial degree

of v0 : Y0 → X0. Hence, according to 1.2.2:

Corollary 4.2.1. With the hypotheses of 4.1.2, the radical degree of h′0 is p
s, where s is the smallest

integer such that F s annihilates (G0)inf; in particular s ≥ 1.

Remark 4.2.2. What can we say about the separable degree of v′0? Of course, it is bounded above
by the separable degree of v0 which is equal to the rank of (G0)ét. We can rene this upper bound
by taking into account the lift A1 of A0. Indeed, there is a unique, maximal étale subgroup H of
(G1)ét, above which the exact sequence (1) will split. We then choose an étale group subscheme
H1 of G1 that lifts H and let B1 be the quotient A1H1. We then get the following factorisation
of pA1 :

A1
w1−→ B1

u1−→ A1

We can apply the construction of section 3 to u1 instead of pA1 . We then deduce that if Z0 is the
reduced scheme-theoretic preimage of X0 in B0, the morphism v′0 : Y0 → Y ′

0 factorises through Z0.
Thus, the separable degree of v′0 is at most the separable degree of u0 : B0 → A0 which is equal to
the rank of (G1)étH .

Exampl 4.2.3. Suppose A0 is an ordinary abelian variety. Then we have H = (G1)ét if and only if
the exact sequence (1) is split, i.e. A1 is the canonical lifting of A0 in the sense of Serre-Tate [8, §5].
In this case the degree of h′0 is equal to the radicial degree which is ps = p.
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4.3. Let X1 be a at curve over R1 which lifts X0 and let i1 : X1 → A1 be a closed immersion
which extends i0. i1 then corresponds to a section i′0 of h0 : V0 → X0 by 2.4.1, in particular, V0

is now a principal homogenous space via the action of V((I0I
2
0 )

∨) (2.2.2) trivialised by i′0. Note
that h0 induces an isomorphism X ′

0
∼−→ X0 where X ′

0 is the image of X0 under i′0.
Let x ∈ pA1(R1) ∩X1(R1) and let τ(x) ∈ V0(k) be the lift of x (2.2.2). Then τ(x) ∈ X ′

0(k) and
by (4.1), τ(x) is also in the image of v′0, so is in Y ′

0(k). We then obtain the following commutative
diagram:

pA1(R1) ∩X1(R1) X ′
0(k) ∩ Y ′

0(k)

X0(k)

τ

h0|X′
0(k)

can

Lmma 4.3.1. The image of pA1(R1)∩X1(R1) in X0(k) is contained in the image of X ′
0(k)∩Y ′

0(k)
and they are equal over the smooth locus of X0.

The rst statement is clear from the above diagram. Suppose σ ∈ X ′
0(k) ∩ Y ′

0(k) is a point of
V0(k) which projects onto a smooth point x0 ∈ X0. We show that σ is the image of a point of
pA1(R1)∩X1(R1) under τ . As σ ∈ Y ′

0(k), there exists a point y0 ∈ Y0(k) such that v′0(y0) = σ. As
A1 is smooth over R1 we can lift y0 to y1 ∈ A1(R1) say. Then x = py1 = p̄(y0) is a point of pA1(R1)
that lifts x0 and we have τ(x) = σ. It suces to show that x ∈ X1(R1) as we know τ(x) ∈ X ′

0(k).
But we suppose that X0 is smooth over k at x0, therefore X1 is smooth over R1 near x0 and locally
the sheaf of ideals that denes X1 in A1 is given by a regular sequence (t1, , td−1). The choice of
ti corresponds to coordinates T1, , Td−1 in the X0-scheme V0 such that a point x ∈ A1(R1) sends
ti to pfi, i = 1, , d−1, fi ∈ k. Then its lift τ(x) is a point of V0 given by Ti = fi (2.3.1). It follows
that X ′

0 is given by equations Ti = 0, i = 1, , d − 1 in V0. Therefore, τ(x) ∈ X ′
0(k) ⇔ fi = 0,

i = 1, d− 1 ⇔ x ∈ X1(R1).

4.4. Let Ỹ ′
0 be the normalisation of Y ′

0 and h̃′0 : Ỹ
′
0 → X0 the composition of the normalisation map

and the projection h′0. Let M0 be the locally free sheaf on Ỹ ′
0 given by the quotient of h̃′∗0 (I0I

2
0 )

by its torsion subsheaf. For example, if X0 is smooth, or more generally if X0 is locally a complete
intersection of A0, then M0 = h̃′∗0 (I0I

2
0 ). Lastly, let M

∨
0 be the dual of M0.

If a ∈ A1(R1), we denote X1 + a for the curve given by the translation of X1 by a. We can now
demonstrate the essential part of the proof of Theorem II that was outlined in the introduction.

Thorm 4.4.1. Suppose that i0 : X0 → A0 satises (∗) (1.1.2) and that the genus of the normal-
isation of X0 is ≥ 2. Then, for all a ∈ A1(R1), the image of pA1(R1)∩ (X1+a)(R1) in (X0+a)(k)
is nite, and is bounded above by the maximal degree µ0 of the invertible subsheaves of M ∨

0 .

First we consider the case a = 0. Let E be the image of pA1(R1) ∩ (X1)(R1) in X0(k); we will
prove that it is nite. If we identify X0 with X ′

0 via the projection h0, the result of 4.3.1 shows that
E is contained in X ′

0(k) ∩ Y ′
0(k) (and moreover they are equal if E lies over the smooth locus of

X0). It suces to show that X ′
0∩Y ′

0 is nite, or equivalently that these integral curves are distinct.
Indeed, X ′

0 is of degree 1 over X0, whereas the radicial degree of Y ′
0 relative to X0 is > 1 by 4.2.1.

This being said, let’s use the section X ′
0 of h : V0 → X0 to identify the X0-scheme V0 with

the vector bundle V((I0I
2
0 )

∨) (2.2.2). The immersion Y ′
0 → V0 corresponds to a morphism of

sheaves h′∗0 (I0I
2
0 ) → OY ′

0
that is zero at precisely the points of X ′

0 ∩ Y ′
0 . As this set is nite, this

morphism is non-zero and by pulling back to Ỹ ′
0 , and passing to the quotient of h′∗0 (I0I

2
0 ) by its

torsion subsheaf, we get a non-zero morphism:

ϵ : M0 → OỸ ′
0



(TRANSLATION) CURVES IN ABELIAN VARIETIES AND TORSION POINTS 13

The dual map ϵ∨ : OỸ ′
0
→ M ∨

0 is then injective and its image is the invertible subsheaf OỸ ′
0
(∆)

of M ∨
0 where ∆ is a positive divisor on Ỹ ′

0 with support on the preimage of X ′
0(k) ∩ Y ′

0(k); in
particular the size of this intersection is bounded above by the degree of ∆, and so the size of E is
bounded above by the maximum of the degrees of invertible sub sheaves of M ∨

0 .
We now prove the more general case. An element a in A1(R1) is of the form pb + c where b

and c are in A1(R1) and c is in the kernel of the reduction map A1(R1) → A0(k). If we replace
X1 by the translation X1 + pb, E gets sent to E + pb. Note that the cardinality of these sets is
the same. If now we replace X1 by X1 + c, V0 and Y ′

0 remain unchanged, only the section X ′
0 of

h0 changes. In other words, using the previous notations, and replacing ϵ with ϵ + (h′0)
∗(η) for a

particular morphism η : I0I
2
0 → OX0 , we obtain the same upper bound as in the case a = 0.

Exampl 4.4.2. i) Suppose A0 is an abelian surface. Then X0 is locally a complete intersec-
tion and V0 is smooth over X0. Then the cardinality of X ′

0(k) ∩ Y ′
0(k) is bounded above by

the intersection number X ′
0 ·Y ′

0 which is also equal to the degree of M ∨
0 . The degree is equal

to pr+s(X0 ·X0) where X0 ·X0 is the self-intersection of X0 in A0 and pr+s is the degree of
h′0 which factors as the following:

– ps is the radicial degree of h′0 as in 4.2.1
– pr is the maximal separable degree of h′0 as in 4.2.2

As X0 is non-elliptic then we have (X0 · X0) > 0 and from 4.3.1 if X0 is smooth, X1(R1)
always contains at least one point of pA1(R1).

ii) Suppose A0 has dimension ≥ 3 and that X0 is smooth. Then if c is a point of Ker(A1(R1) →
A(k)), then (X1+ c)(R1) does not intersect pA1(R1). In fact, we can identify Ker(A1(R1) →
A(k)) with a Lie algebra L of A0. For all y ∈ V0(k), the points c of L such that the section of
h0 : V0 → X0 associated to (X1+ c) (cf. 2.4) passes through y, correspond to the points of an
algebraic curve Ly in L. The union of the curves Ly over y ∈ Y ′

0(k) is a constructible set of
L of dimension ≤ 2, therefore distinct from L and it suces to choose c is in its complement.

Remark 4.4.3. Under the hypotheses of 4.4.1, pA1(R1) ∩X1(R1) is nite and in fact the kernel of
the map pA1(R1) → A0(k) under reduction modulo p is nite (for example it is a quotient of the
kernel of multiplication by p on A0(k)).

5. Rational and Ramified Torsion (Local Case)

5.0. In this section, R is a complete discrete valuation ring with fraction eld K of characteristic
0, and algebraically closed residue eld k of characteristic p > 0. We assume that the valuation
group of K is Z and let e denote the valuation of p (e is the absolute ramication index of R).

Let K̄ be an algebraic closure of K and G the Galois group of K̄K.

5.1. Let A be an abelian R-scheme, AK the generic bre, A0 the special bre and T the torsion
subgroup of A(K̄), equipped with the natural action of G. We have T = Tp


Tp′ , where Tp is

the p-primary torsion of T and Tp′ is coprime-to-p torsion. As A is an abelian R-scheme and k is
algebraically closed, we have Tp′ ⊆ A(K) = A(R) and in particular, G acts trivially on Tp′ .

5.2. Let Ap∞ be the p-divisible R-group constructed from the kernels of multiplication by powers
of p on A. We have an exact sequence of p-divisible R-groups:

(1) 0 → (Ap∞)inf → (Ap∞) → (Ap∞)ét → 0

where (Ap∞)inf is the p-divisible group associated with formal completion of A along the zero

section and (Ap∞)ét is étale, isomorphic to (QpZp)
h where h is the p-rank of A0.

The exact sequence (1) induces the following exact sequence on torsion points with values in K̄
as G-modules:
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(2) 0 → Tinf → Tp → (Tp)ét → 0

Let T ′
p be the maximal divisible subgroup of Tp(K).

Lmma 5.2.1. Suppose that the ramication index e of R is < p − 1. Then T ′
p is a factor of the

G-module Tp.

In fact, as T ′
p is unramied over R, the specialisation lemma of [6, §1, Prop. 1.1] implies T ′

p ∩
(Tp)inf = 0. Then the composition T ′

p → Tp → (Tp)ét is injective and as T ′
p is p-divisible the image

is a factor of the trivial Galois module (Tp)ét ∼= (QpZp)
h. Let T1 be the supplement of the image,

then the preimage of T1 in Tp is a supplement of T ′
p; invariant under the Galois action.

From now on we assume e < p− 1 and we choose a supplement T ′′ of T ′
p in Tp, closed under the

Galois action. Then, by construction, the torsion subgroup give a p-divisible subgroup A′′ of Ap∞ .
The following lemma shows the importance of the Galois action of G on T ′′(K̄).

Lmma 5.2.2. The cardinality of the orbits of G in T ′′(K̄) tend to ∞ with the order of the elements
of T ′′(K̄) (i.e. ∀N > 0, there exists an integer r > 0 such that, if x ∈ T ′′(K̄) has order > pr, then
the G-orbit of x has cardinality > N).

In fact, let M ′′ = Hom(QpZp, T
′′) the Tate module associated to T ′′. It is a free Zp-module

of nite rank, with a continuous G-action. Let M∗ denote the open subset of M (with respect to
the p-adic topology) formed of the elements whose image in MpM is non-zero. An immediate
compactness argument shows that the lemma is equivalent to the fact that G has no nite orbits
in M∗. Now let M1 be the largest Zp-submodule of M on which G acts through a nite group.
We will show M1 = 0. Then T1 = lim−→

n

M1p
nM1 is a divisible subgroup of T ′, on which G acts

by a nite group. It follows, for example by theorems of Tate [11, Cor. 1, p. 181] that T1 ∩ (Tp)inf
is nite. Then the composition T1 → Tp → (T0)ét has nite kernel. As G acts trivially on (Tp)ét
and as T1 is divisible, G acts trivially on T1. Thus T1 = 0, as can be seen through the maximal
character of T ′

p.

Exampl 5.2.3. i) If the p-rank h of A0 is zero, then T ′
p = 0, T ′′ = Tp = Tinf.

ii) If A0 is ordinary, then T ′
p = (Tp)ét (and so T ′′ = Tinf) if and only if A is the canonical lift of

A0 in the sense of Serre-Tate. On the other hand, if A is a more general lift of A0, T
′
p = 0

and T ′′ = Tp.

5.3. We have a (non-canonical) decomposition, compatible with G: T = T ′T ′′ where T ′ =
Tp′


T ′
p.

We say (abusively) that T ′ is the rational torsion of A and that T ′′ (dened for e < p− 1) is the
ramied torsion of A. The rational torsion has the following properties:

i) The action of G on T ′ is trivial and T ′ ⊆ A(K) = A(R).
ii) T ′ is p-divisible.
iii) The specialisation map

T ′ → A(K)
∼−→ A(R) → A(k)

is injective (in fact we have T ′ ∩ Tinf = T ′
p ∩ Tinf = 0).

6. Curves and Rational Torsion (Local Case)

6.0. We reuse the notations of 5.0 and 5.1. Moreover, in addition to an abelian R-scheme A,
suppose we have an R-curve X that is at and immersed in A via i : X → A and satises the
following conditions:
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i) The bres of X are integral; the normalisation X̃ of X is smooth over R, with bres of

genus ≥ 2. In particular, the special bre X̃0 of X̃ is the normalisation of X0. Let J be the

Jacobian of X̃ and a : J → A the Albanese morphism associated to X̃ → X
i
−→ A.

ii) Suppose that a is surjective with kernel N smooth over R and the group of connected
components of N : NN0 has order coprime to p.

Note that condition ii) depends only on the special bre and so is equivalent to i0 : X0 → A0

satisfying (∗) as in 1.1.2. Moreover, when the ramication index e of R satises e < p − 1, by a
result in [6, §1, Prop. 1.2], condition ii) can also be tested on the generic bre.

6.1. We start by proving a corollary of 4.4.1.

Corollary 6.1.1. Suppose that R is unramied (i.e. e = 1) and the conditions of 6.0 are satised.
Then, for all a ∈ A(R) = A(K), the image of (X + a)(R) ∩ pA(R) in (X0 + a0)(k) is nite and
bounded above by µ0 (4.4.1).

Indeed, set R1 = Rp2R, A1 = A ×R R1, X1 = X ×R R1. Then the ring R1 is of the type
considered in 4.0 and we can apply Theorem 4.4.1 to A1 and X1. Then the image of (X + a)(R)∩
pA(R) in (X0 + a0)(k) is contained in the image of (X1 + a1)(R1) ∩ pA1(R1), and the corollary
follows.

Remark 6.1.2. In fact, for e = 1, it follows from the integrality properties of the logarithm and
exponential relative to the formal completion of A along the unit section [7, Ch. III] that the
elements of Ker(A(R) → A1(R1)) is contained in pA(R). Then the image of (X + a)(R) ∩ pA(R)
in (X0 + a0)(k) is in fact equal to the image of (X1 + a1)(R1) ∩ pA1(R1).

6.2. Let pA denote multiplication by p on A, Y the proper, at R-curve which is set wise equal to
the preimage of X under pA and Ỹ the normalisation of Y . We then see under the conditions of
6.0 that the special bre Ỹ0 of Ỹ is irreducible.

Proposition 6.2.1. Under the hypotheses of 6.1.1 Ỹ0 is not reduced (i.e. appears with multiplicity
> 1).

Let x ∈ X(R) ∩ pA(R). Then, apart from a nite number of points x that, after restricting to
the generic bre, pass through the singular points of XK , the points of pA(R)∩X(R) are precisely

the images of points of X̃(R). Corollary 6.1.1 is thus equivalent to the fact that there are only a

nite number of points of Ỹ0(k) which lift to points of Ỹ (R). This condition is equivalent to the

fact that Ỹ0 is not reduced; moreover, when Ỹ0 is not reduced, the only points of Ỹ0 which lift to
points of Ỹ (R) are the points y of Ỹ0 which are singular in Ỹ (i.e. points such that OỸ ,y is not

regular).

Remark 6.2.2. We could give a direct proof of 6.2.1, valid under the assumptions of 6.0 and the
condition e ≤ p − 1, then deduce 6.1.1. However, the approach presented is more elementary and
gives a relatively explicit bound and lends itself better to replacing X by a translate. Nevertheless,
it would be interesting to study the singularities of Ỹ .

6.3. In 5.3 we introduced the rational torsion T ′ of A.

Thorm 6.3.1. Under the hypotheses of 6.1.1, for all a ∈ A(K), T ′ ∩ (X + a)(K) is nite and
bounded by µ0 (4.4.1).

This follows immediately from 6.1.1 and from the fact that the points of T ′ are in pA(R) and
are determined by their reductions in A0(k) (5.3).

6.4. We will now consider T ′ ∩ (X + a)(K̄), for a ∈ A(K̄) \A(K).
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6.4.0. Note rst that as X is non-elliptic, the subgroup scheme H1 of A formed from translations
that leave X xed is nite. Let H be the closure in H1 of its generic bre. Then H is R-at,
with an action on X that extends to an action on X̃. As X̃ has bres of genus ≥ 2, X̃ has no
innitesimal morphisms and therefore is étale. Let Z ⊆ A×A be the inverse image of X under the
morphism:

A× A → A; (a, b) → b− a

Consider Z ∩ (A × X) as an A-scheme via the rst projection. Then the bre over a point
a ∈ A(K̄) is X ∩ (X + a). The morphism Z ∩ (A × X) → A, induced by the rst projection, is
proper and therefore nite over (A\H)K . In particular, the cardinality of the bres over (A\H)(K̄)
are bounded, say by µ1.

Exampl 6.4.1. If A is dimension 2 over R, we can take µ1 to be the self-intersection X0 ·X0 of
X0 in A0.

Proposition 6.4.2. For all a ∈ A(K̄) \A(K), T ′ ∩ (X + a) is nite, with cardinality ≤ µ1.

We note the following corollary of 6.3.1 and 6.4.2:

Corollary 6.4.3. Under the assumptions of 6.1.1, for all a ∈ A(K̄), T ′ ∩ (X + a) is nite with
cardinality ≤ µ = max(µ0, µ1).

Proof of 6.4.2. Let B be the quotient of A by the nite étale subgroup H (6.4.0) and let b be
the image of a in B(K̄). As H is étale, and R complete with algebraically closed residue eld, the
hypothesis a ∈ A(K̄)\A(K), implies b ∈ B(K̄)\B(K), and consequently, there exists g ∈ Gal(K̄K)
such that ag − a ∈ H .

Moreover, the points of T ′ that are contained in X + a, being K-rational, are also contained
in X + ag and therefore in (X + a) ∩ (X + ag)(K̄). By translating by −a, this intersection is in
bijection with X ∩ (X + ag − a)(K̄) which is nite of cardinality ≤ µ1, as a

g − a ∈ H . □

7. Proof of Theorem I

7.0. Let c be an algebraically closed eld of characteristic 0, A an abelian variety over c, X a
non-elliptic, proper, integral curve and i : X → A an immersion; X and i dened over c. Let
T ⊂ A(c) be the torsion subgroup of A(c). We claim that X ∩ T is nite.

7.1. Let B ⊂ A be the abelian subvariety generated by the set of dierences (x−x′), (x, x′ ∈ X(c)).
Then there exists a ∈ A(c) such that X is contained in B + a. If the image of a in AB is not
torsion, T ∩ X = ∅. Otherwise, by translating X by a torsion point, we can reduce to the case
where X ⊂ B.

Suppose now that B = A. Let X̃ be the normalisation of X, J the Jacobian of X̃, a : J → A the
Albanese morphism associated with the composition X̃ → X → A, N the kernel, N0 the connected
component of the identity of N and h the order of NN0. The assumption B = A is equivalent to
the fact that a is surjective.

7.2. There exists a Z-algebra of nite type E over c, such that X, A and i : X → A extend over
S = Spec(E). By potentially restricting S to a non-empty open set, we can assume the following:

i) A is an abelian S-scheme
ii) X is a proper, at S-curve, with geometrically integral bres and i : X → A an immersion.

iii) The normalisation X̃ of X is a proper, smooth S-curve with geometric bres of genus ≥ 2.

Let J be the relative Jacobian of X̃ over S and a : J → A the Albanese morphism associated
with the composition X̃ → X → A. Then a is surjective and its kernel N is smooth over S
(note that N is smooth over the generic point η of S which is in characteristic 0). Finally, if
N0 is the connected component of the identity of N then NN0 is nite étale of rank h.
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7.3. Let s be a closed point of the bre of S over Q. Note that the number of torsion points
contained in a geometric bre of X can only increase by specialisation in characteristic 0, in
particular when specialising from η to s. Even if it means changing the original curve, we can
replace S by an open set of the closure of s in S. We therefore reduce to the case where S is a
non-empty open set of the spectrum of the ring of integers of a number eld L. Even it means
restricting S, we can assume that in addition to the conditions of 7.2 we have:

iv) S is unramied over Spec(Z) and 2h is invertible in S.

If v is a nite place of S, with valuation ring Ev, and completion Ev, then v divides a prime
p and if R denotes the completion of the maximal unramied extension of Ev, R is of the type
considered in 5.0 with e = 1. If we abuse notation and denote again by X and A the preimages of
X and A under E → R, then X and A satisfy the conditions of 4.4.1.

Proposition 7.3.1. Let l be a prime and Tl the l-primary component of the torsion of AL. Then
there exists an integer vl having the following property: for any algebraically closed extension L′ of
L and for all a ∈ A(L′), Tl ∩ (X + a)(L′) is nite and of cardinality ≤ vl.

Indeed, choose a nite place v over E which divides some prime p ̸= l. From this we obtain
a local ring R and let K̄ be the algebraic closure of its eld of fractions. Then the l-primary
component of the torsion T of A(K̄) is contained in the p′-torsion Tp′ , and a fortiori in the rational
torsion T ′ relative to R (5.3). By 6.4.3, there exists vl such that for all a ∈ A(K̄), the cardinality
of Tl ∩ (X + a)(K̄) is nite and bounded by vl.

If now L′ is an algebraically closed extension of L, even if it means enlarging L′, we can assume
K̄ ⊂ L′. Let a ∈ A(L′). Then a is in A(S′) where S′ is the spectrum of a K̄-algebra of nite type
over L′. Let s′ be a point of S′(K̄). Then, by the previous specialisation argument, we can pass
from the generic point of S′, to the point s′, and return to the case where a ∈ A(K̄). Hence the
proposition.

Remark 7.3.2. Proposition 7.3.1 can also be obtained directly from results of Bogomolov [1].

7.4. To complete the proof of Theorem I, we choose a nite place v of E, corresponding to a ring
R. Suppose R has residue characteristic p; K̄ is the algebraic closure of the eld of fractions of K
of R, and G the Galois group of K̄K.

As e = 1 and p ̸= 2, we have e < p − 1 and we can decompose the torsion T of AK into
T = T ′T ′′ (5.3), where T ′ is the rational torsion and T ′′ is the ramied torsion contained in the
p-primary component of T . We recall the niteness results already obtained:

i) There exists an integer µ, such that for all a ∈ A(K̄), T ′ ∩ (X + a)(K̄) has cardinality ≤ µ
(6.4.3).

ii) There exists an integer vp such that for all a ∈ A(K̄), T ′′ ∩ (X + a)(K̄) has cardinality
bounded by vp (applying 7.3.1 with l = p).

Let x ∈ T ∩ (X + a)(K̄). We have x = x′ + x′′, with x′ ∈ T ′(K̄) and x′′ ∈ T ′′(K̄).
Then x′′ is a point of T ′′∩ (X−x)(K̄). As x′ and X are dened over K and as T ′′ is stable under

G, it follows that the orbit of x′′ under G is contained in T ′′ ∩ (X − x′)(K̄). Then by ii) above,
this orbit has at most vp elements. It then follows from 5.2.2 that the order of x′′ is bounded,
independently of x′, i.e. there are only nitely many possibilities for the element x′′.

Moreover, for a xed x′′, x′ ∈ T ′∩(X−x′′)(K̄) therefore takes at most µ distinct values according
to i) above. Overall, there are only many nitely many decompositions x = x′ + x′′.

8. The inductive system Xn

8.0. In this section, preliminary to the study of Lang’s conjecture; L is a eld of characteristic 0,
A an abelian L-scheme and X a proper, geometrically integral, non-elliptic curve contained in A,
dened over L. We denote by L̄ an algebraic closure of L. We saw in 6.3 that only a nite subgroup
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H of A acts on X by translation. If B = AH and if Y is the image of X in B, then Y is not xed
by any non-zero translation of B.

8.1. For an integer n > 0, let nA denote the multiplication by n map on A, nA the kernel, Xn the
image of X under nA and Sn the singular locus of Xn. In particular, X = X1 and S1 is the singular
locus of X. For nn′, multiplication on A by n′n induces a map jn

′
n : Xn → Xn′ , so that we obtain

a ltered inductive system (Xn, j
n′
n ) indexed by integers > 0, endowed with order relations given

by divisibility.

Proposition 8.1.1. Suppose that H = 0 (8.0). Then, for all n > 0, the morphism X → Xn induced
by nA is birational. In particular, if x ∈ X(L̄) is such that nx ∈ A(L), then, either x ∈ X(L) or
nx ∈ Sn(L).

Indeed, let Yn be the preimage of Xn under nA, so that Yn → Xn is étale and X is an irreducible
component of Yn. To establish the rst part, even if it means replacing L by L̄ we can assume
L to be algebraically closed. Then Yn → Xn is an étale Galois covering with group nA(L); this
group acts transitively on the irreducible components of Yn and since H = 0, the stabiliser of the
component X is 0, thus nA(L) also acts freely on the set of components. It follows that each
component is of degree 1 over X, hence the rst assertion; the second follows immediately.

Remark 8.1.2. The singularities of Xn are the images of the singularities of Yn, thus consisting of,
on one hand, the singularities S1 of X and, on the other hand, the images in X of the points of Yn

that lie in multiple components.

We note the following corollary of Theorem I:

Corollary 8.1.3. The bres of the canonical map X(L̄) → lim−→
n

Xn(L̄) are nite.

Indeed, let x ∈ X(L̄); even if it means translating by −nx on Xn, we may reduce to the case
x = 0. Then the bre of X(L̄) → lim−→

n

Xn(L̄) over 0 is the torsion lying on X, thus is nite by

Theorem I.

8.2. Write R, K, K̄, G as in (5.0) and let A and X be R-schemes satisfying the conditions of (6.0).

Proposition 8.2.1. The set of x̄ ∈ X(K̄) \ X(K) for which there exists an integer n > 0 with
nx̄ ∈ A(K) is nite.

Let H be the étale subgroup scheme (6.4.0) of A formed of translations under which X is stable
and let Y be the image of X in B = AH . Since H is étale and R is complete with algebraically
closed residue eld, a point of A(K̄) has image in B(K) if and only if it is a point of A(K). We
then replace X by Y and A by B, and to establish 8.2.1 we suppose H = 0.

Let x̄ ∈ X(K̄) \ X(K) such that nx̄ ∈ A(K). Write n = prm where (m, p) = 1. Since
multiplication by m on A is étale, the previous argument shows that prx̄ ∈ A(K) and we can
restrict to the case where n = pr.

We again take the exact sequence of p-divisible groups over R of 5.2 (1) and suppose for sim-
plicity that A′′ = (Ap∞)inf, A

′ = (Ap∞)ét. Finally, let rA, rA
′, rA

′′ be the respective kernels of
multiplication by pr on A, A′, A′′. We then have an exact sequence of nite, at group schemes
over R:

0 → rA → rA
′ → rA

′′ → 0;

so that, if A(r) is the abelian R-scheme quotient of A by rA
′′, we have a factorisation of (pr)A :

A
ur−→ A(r) vr−→ A. Since vr is étale, then again ur(x̄) ∈ A(r)(K).
Then let vp be an integer > 0 as in 7.4 ii) and let n0 be an integer such that pn0 ≥ vp. Denote

by n′
0 the smallest integer such that, if a′′ is a torsion point of A′′(K̄) with order > pn0 , then
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the orbit of a′′ under G has cardinality > vp (5.2.2). Suppose m = pn0+n′
0 . We then prove that

mx̄ ∈ A(K). Then, by 8.1.1, we will then have that mx̄ ∈ Sm(K), which leaves only a nite number
of possibilities for x̄.

Note that the bre of ur : A → A(r) over a rational point ur(x̄) is a K-torsor Pr under the
group scheme rA

′′
K , the generic bre of rA

′′. The point x̄ ∈ Pr(K̄) has an image x in the scheme
Pr. Let K(x) be the residue eld of x. From the denition of vpn1

, the degree h of K(x) over

K is ≤ vp. We write h = h1p where (p, h1) = 1. We then have n1 ≤ n0 by the denition of
n0. It follows from [9, Prop. 6, p. 127] that the torsor Pr is trivialised by multiplication by h and
thus by multiplication by pn1 (since rA

′′(K̄) is a p-group), and by multiplication by pn0 . We thus
obtain a K-morphism from Pr to the trivial torsor rA

′′
K . Let y be the image of x in rA

′′
K . We

have [K(y) : K] ≤ [K(x) : K] ≤ vp. It then follows from the denition of n′
0 that y is a point of

n′
0
A′′

K ∩ rA
′′
K . Finally, the image of x under multiplication by m = pn0+n′

0 is indeed a rational point.

9. Around the conjecture of Serge Lang

9.0. In this section, we reuse the notation L, L̄, A, X of 8.0. We denote by G the Galois group of
L̄L. Let Γ be a subgroup of nite type of A(L). We denote by Γ̄ the subgroup of A(L̄) of division
points of Γ:

Γ̄ = x ∈ A(L̄)  ∃n ≥ 1 such that nx ∈ Γ
We then have an exact sequence of groups with an action of G:

(1) 0 → T (L̄) → Γ̄ → V → 0

where T (L̄) is the torsion subgroup of A(L̄) and V is the Q-vector space Γ⊗ZQ on which G acts
trivially.

We will study the niteness properties of Γ̄ ∩ X(L̄) and of the subgroup of Γ̄ generated by
Γ̄ ∩X(L̄). We rst study the case where L is a local eld, then the case where L is an extension
of nite type over Q.

9.1. Let R, K, K̄, k be as in 5.0 and let A and X satisfy conditions i) and ii) of 6.0. Finally, let Γ
be a subgroup of nite type of A(K) = A(R) and Γ̄ ⊆ A(K̄); the group of division points of Γ. We

denote by Γ′ the subgroup of Γ̄ generated by Γ̄∩X(K̄), Γ′(K) = Γ′ ∩A(K) and Γ̃ the subgroup of
A(K) generated by Γ̄ ∩X(K). We then have the inclusions:

Γ̃ ⊆ Γ′(K) ⊆ Γ′

Thorm 9.1.1. Under the hypotheses above, we have the following niteness properties:

i) The group ΓΓ̃ is of nite type.
ii) The image of Γ̄ ∩X(K) = Γ̄ ∩X(R) in X(k) is nite and the image of Γ′(K) in A(k) is a

group of nite type.
iii) The torsion subgroup of Γ′ is nite.

Proof of i). The group Γ′Γ̃ is generated by the image of Γ̄ ∩ (X(K̄) \X(K)), which is a nite set

by 8.2.1 thus Γ′Γ̃ is of nite type. □
To establish ii), consider Γ̄(K) = Γ̄ ∩ A(K).

Lmma 9.1.2. The group Γ̄pΓ̄(K) is nite.

Indeed, we have the exact sequence (1) of 9.0:

0 → T (K̄) → Γ̄ → V → 0

Taking the invariant subgroups under the Galois group of K̄K, we obtain the exact sequence:
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0 → T (K) → Γ̄(K) → W → 0

where W is the image of Γ̄(K) in V .
To establish the lemma, it suces to show that T (K)pT (K) and WpW are nite. But W is

a subgroup of V , nite dimensional over Q, thus WpW is nite. Moreover, T (K), the group of
torsion points of A(K), is the direct sum of a nite group and a p-divisible group (denoted by T ′

in 5.3), thus T (K)pT (K) is nite.
Let then γi, i ∈ I, be a nite family of representatives in Γ̄(K) of Γ̄(K)pΓ̄(K). Denote by

Xi the curve X − γi the translation of X by −γi. Then, for each element of Γ̄(K) write γ =
γi + pa, for a suitable choice of i and a ∈ A(K). If moreover γ is in X(K), pa = γ − γi is in
Xi(K) ∩ pA(K) = Xi(R) ∩ pA(R). By 6.1.1, the image of Xi(R) ∩ pA(R) in Xi(K) is nite, thus
the image of Γ̄(K)∩X(K) in X(k) is nite. Since Γ̄(K)∩X(K) = Γ̄∩X(K), we have established

the rst part of ii). Since Γ̄∩X(K) is generated by the group Γ̃ by denition, we then deduce that

the image of Γ̃ in A(k) is a group of nite type. Moreover, it follows from i) that Γ′(K)Γ̃ is a
group of nite type. Combining these results, we then deduce that the image of Γ′(K) in A(k) is
of nite type, hence ii).

Proof of iii). Taking into account i), it suces to show that the torsion subgroup of Γ̄(K) is nite.
But, the specialisation map A(R) → A(k), restricted to torsion points, has a nite kernel (and even
is injective if p ̸= 2), thus iii) follows form ii). □
Remark 9.1.3. i) Considering the integral closure R̄ of R in K̄ which is a valuation ring (non-

discrete) with residue eld k, we dene a specialisation map A(K̄)
∼−→ A(R̄) → A(k). It then

follows from assertions i) and ii) of 9.1.1 that the image of Γ̄ in A(k) is a group of nite type,
and it follows from the proof of 9.1.1 that the image of Γ̄ ∩X(K̄) in X(k) is nite.

ii) Under the hypotheses of 9.1, suppose that the restriction of the specialisation map A(K) →
A(k) to Γ is injective, then 9.1.1 ii) implies that Γ∩X(K) is nite. Let us point out, without
proof, that this remark leads to a new proof of the Mordell conjecture over function elds of
characteristic 0.

9.2.

Thorm 9.2.1. We take the hypotheses of 9.0 and suppose further that L is of nite type over
Q, so that M = A(L) is a group of nite type. Let H be the nite subgroup scheme of A formed by
the translations under which X is stable (6.3) and set B = AH, Y = AH, N = B(L). Then:

i) The subgroup of M̄ generated by M̄ ∩X(L̄) is of nite type.
ii) N̄ ∩ (Y (L̄) \ Y (L)) is nite.
iii) M̄ ∩ X(L̄) is nite if and only if Y (L) is nite, that is to say if and only if the curve Y

satises the Mordell conjecture over the eld L.
iv) The inductive system lim−→

n

Sn(L) of (8.1) is stationary.

Note that assertion iii) shows that the conjecture of Serge Lang [5] follows from the Mordell
conjecture for curves. Specically, we have the following result:

Corollary 9.2.2. Let c be an algebraically closed eld of charcteristic > 0, A an abelian variety
over c, X a non-elliptic, proper, integral curve in A, Y the curve XH where H is dened as in
9.2.1. Let Γ be a subgroup of nite type of A(c) and let L be a subgrield of c, nite type over Q,
such that A and Y are dened over L and that Γ ⊆ A(L). Then if Y (L) is nite, Γ̄∩X(c) is nite.

We prove the main assertion i) of 9.2.1. Let M ′ be the subgroup of M̄ generated by M̄ ∩X(L̄).
Note that M ′ is unchanged if we replace L by any nite extension. We can thus suppose that
X(L) ̸= ∅. Replacing A by an abelian subvariety, we can suppose that A is generated by the
dierences of points of X.
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Let E be a Z-algebra of nite type, contained in L, with eld of fractions L and let S = Spec(E).
Even if it means replacing S by a non-empty open subset, we can assume that X and A extend
to S-schemes (denoted again by A and X) that satises conditions i), ii) and iii) of 7.2. On the
other hand, we can no longer reduce to the case where L is a number eld. If we restrict S, we can
suppose that the following condition holds:

(iv)’ S is smooth over Spec(Z) and 2h (or h as in 7.1) is invertible in S.

The image of S in Spec(Z) is a non-empty open set. Let then p ∈ Spec(Z) be a prime in the
image of S and let η be the generic point of the bre of S over p. Condition (iv)’ implies that the
local ring OS,η of S at η is a discrete valuation ring, the maximal ideal of which is generated by
p. By [3, Ch. III, 10.3.1], we can extend OS,η to a discrete valuation ring R, so that the maximal
ideal of R is again generated by p and the residue eld k of R is an algebraic closure of the residue
eld of OS,η.

Suppose further that R is complete, then R is of the type considered in 5.0 and the eld of
fractions K of R is an extension of L. Moreover, the preimages of A and X under the base change
Spec(R) → S satisfy the conditions i) and ii) of 6.0.

We can then apply 9.1.1 and take Γ to be the group A(L) ⊂ A(K). The group denoted by Γ′ in
9.1.1 is then equal to the group M ′. Then by 9.1.1 iii), M ′ is a torsion subgroup that is nite.

Let n be an integer ≥ 1 that annihilates the torsion of M ′. It follows, for example by the exact
sequence (1) of 9.0 with Γ = A(L), that nM ′ is identied with a subgroup of A(L), thus is of nite
type and consequently M ′ is of nite type.

We now prove assertion ii) of 9.2.1. Assertion i) applied to the curve Y in B shows that the
subgroup N ′ of N̄ generated by N̄ ∩Y (L̄) is of nite type. Let n be an integer ≥ 1 that annihilates
the torsion of N ′. As above we see that nN ′ ⊆ B(L), thus if y ∈ Y (L̄) ∩ N̄ , ny ∈ B(L). Since
the curve Y is not stable under any non-zero translations of B, it follows from 8.1.1 that (Y (L̄) \
Y (L)) ∩ N̄ is nite, hence ii).

Proof of iii). If M̄ ∩ X(L̄) is nite, it is clear that Y (L) is nite. Conversely, if Y (L) is nite, it
follows from ii) that N̄ ∩ Y (L̄) is nite, thus M̄ ∩ X(L̄) (which is contained in the preimage of
N̄ ∩ Y (L̄) under the projection A(L̄) → B(L̄)) is also nite. □

Proof of iv). To analyse the inductive system lim−→
n

Sn(L), we can restrict ourselves to integers n

that are multiples of the order of the nite group H(L̄), which allows us to replace X by Y and
thus we suppose H = 0.

Let S∞(L) = lim−→
n

Sn(L). By 8.1.3, to see that the inductive system Sn(L) is stationary, it suces

to show that S∞(L) is nite. Note that a point of S∞(L) belongs to at least one of the three sets:

a) The image of M̄ ∩ (X(L̄) \X(L)), which is a nite set by 9.2.1 ii) and the fact that H = 0.
b) The image of S1(L) which is clearly nite.
c) The set of images of points xn ∈ Sn(L), n > 1, such that the bre of X → Xn over xn

contains the rational points x and x′, with x − x′ of exact order n. Since the torsion group
of A(L) is nite, only a nite number of integers n arise, thus the latter type concerns only
a nite number of points of S∞(L).

These considerations imply that S∞(L) is nite and complete the proof of 9.2.1.

□
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